L1 model-driven recursive multi-scale denoising network for image super-resolution

Most existing deep learning based single-image super-resolution (SISR) methods mainly improve the reconstruction performances from the perspective of data-driven, i.e., widening or deepening the networks according to the huge scale of the training data. However, it will bring a huge amount of weight...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems Jg. 225; S. 1
Hauptverfasser: Sun, Zhongfan, Zhao, Jianwei, Zhou, Zhenghua, Gao, Qingqing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 05.08.2021
Elsevier Science Ltd
Schlagworte:
ISSN:0950-7051, 1872-7409
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Most existing deep learning based single-image super-resolution (SISR) methods mainly improve the reconstruction performances from the perspective of data-driven, i.e., widening or deepening the networks according to the huge scale of the training data. However, it will bring a huge amount of weights and biases, and cost the expensive computations. Recently, some people have proposed a new frame for designing the deep networks according to the algorithms deduced from the ℓ2-optimization problem. But they did not consider the case with outliers. Since ℓ1-norm can describe the sparsity of the outliers better than ℓ2-norm, we propose an effective deep network designed according to the new algorithm deduced from the ℓ1-optimization problem. In our proposed method, an effective iterative algorithm for the ℓ1 reconstructed optimization problem is deduced based on the split Bregman algorithm, majorization–minimization algorithm, and soft thresholding operator. Then according to the deduced iterative algorithm, an effective deep network, named ℓ1 Model-Driven Recursive Multi-Scale Denoising Network (ℓ1-MRMDN), is designed. Due to the iteration form of the deduced algorithm, the proposed ℓ1-MRMDN contains an inner recursion and an outer recursion. Therefore, our proposed method can not only relieve its sensitiveness to the outliers because of the ℓ1 data fidelity term, but also avoid designing the deep network blindly via the guidance of prior knowledge. Extensive experimental results illustrate that our proposed method is superior to some related popular SISR methods.
AbstractList Most existing deep learning based single-image super-resolution (SISR) methods mainly improve the reconstruction performances from the perspective of data-driven, i.e., widening or deepening the networks according to the huge scale of the training data. However, it will bring a huge amount of weights and biases, and cost the expensive computations. Recently, some people have proposed a new frame for designing the deep networks according to the algorithms deduced from the ℓ2-optimization problem. But they did not consider the case with outliers. Since ℓ1-norm can describe the sparsity of the outliers better than ℓ2-norm, we propose an effective deep network designed according to the new algorithm deduced from the ℓ1-optimization problem. In our proposed method, an effective iterative algorithm for the ℓ1 reconstructed optimization problem is deduced based on the split Bregman algorithm, majorization–minimization algorithm, and soft thresholding operator. Then according to the deduced iterative algorithm, an effective deep network, named ℓ1 Model-Driven Recursive Multi-Scale Denoising Network (ℓ1-MRMDN), is designed. Due to the iteration form of the deduced algorithm, the proposed ℓ1-MRMDN contains an inner recursion and an outer recursion. Therefore, our proposed method can not only relieve its sensitiveness to the outliers because of the ℓ1 data fidelity term, but also avoid designing the deep network blindly via the guidance of prior knowledge. Extensive experimental results illustrate that our proposed method is superior to some related popular SISR methods.
ArticleNumber 107115
Author Sun, Zhongfan
Zhou, Zhenghua
Gao, Qingqing
Zhao, Jianwei
Author_xml – sequence: 1
  givenname: Zhongfan
  surname: Sun
  fullname: Sun, Zhongfan
  organization: Department of Information Sciences and Mathematics, College of Sciences, China Jiliang University, Hangzhou 310018, PR China
– sequence: 2
  givenname: Jianwei
  orcidid: 0000-0001-9566-2178
  surname: Zhao
  fullname: Zhao, Jianwei
  email: zhaojw@amss.ac.cn
  organization: Department of Information Sciences and Mathematics, College of Sciences, China Jiliang University, Hangzhou 310018, PR China
– sequence: 3
  givenname: Zhenghua
  surname: Zhou
  fullname: Zhou, Zhenghua
  organization: Department of Information Sciences and Mathematics, College of Sciences, China Jiliang University, Hangzhou 310018, PR China
– sequence: 4
  givenname: Qingqing
  surname: Gao
  fullname: Gao, Qingqing
  organization: Department of Information Sciences and Mathematics, College of Sciences, China Jiliang University, Hangzhou 310018, PR China
BookMark eNotkE9rwzAMxc3oYG23b7CDYWd3sp3EzmUwyv5BYTC2s0kTpThN7c5OOvbt55JdJCEeT0-_BZk575CQWw4rDry471Z75-NvXAkQPK0U5_kFmXOtBFMZlDMyhzIHpiDnV2QRYwcAQnA9Jx8bTg--wZ41wZ7Q0YD1GGIa6WHsB8tiXfVIG3TeRut21OHw48Oetj5Qe6h2SON4xMACRt-Pg_Xumly2VR_x5r8vydfz0-f6lW3eX97WjxuGQuqBVbLWRd60CGVVqFJKVEKJttxqsZXY6gwaqABqVeSAOtumCiBFkeu2zoQUcknuJt9j8N8jxsF0fgwunTQiz3RRykJCUj1MKkxRThaDibVFV2Nj06uDabw1HMyZo-nMxNGcOZqJo_wDnDtqyA
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier Science Ltd. Aug 5, 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Aug 5, 2021
DBID 7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2021.107115
DatabaseName Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID S0950705121003786
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
77I
7SC
8FD
AATTM
AAXKI
AAYWO
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
E3H
EFKBS
F2A
JQ2
L7M
L~C
L~D
~HD
ID FETCH-LOGICAL-e238t-a3c865dfe09a67933e7272f9b82b3ef840d0a00c7650e84b50e0032658fc42323
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000659444400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Fri Nov 14 18:44:31 EST 2025
Fri Feb 23 02:44:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Denoising network
Super-resolution
Iteration algorithm
ℓ1 model-driven
Majorization–minimization algorithm
Soft thresholding operator
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-e238t-a3c865dfe09a67933e7272f9b82b3ef840d0a00c7650e84b50e0032658fc42323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9566-2178
PQID 2548693630
PQPubID 2035257
ParticipantIDs proquest_journals_2548693630
elsevier_sciencedirect_doi_10_1016_j_knosys_2021_107115
PublicationCentury 2000
PublicationDate 2021-08-05
20210805
PublicationDateYYYYMMDD 2021-08-05
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-05
  day: 05
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References J. Li, F. Fang, K. Mei, G. Zhang, Multi-scale residual network for image super-resolution, in: European Conference on Computer Vision, 2018, pp. 517-532.
E.J. Candès, Compressive sampling, in: Proc. Int. Congr. Math., ICM 2006, vol. 3, 2006, pp. 1433-1452.
J. Sun, J. Sun, Z. Xu, H.Y. Shum, Image super-resolution using gradient profile prior, in IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1-8.
Y. Li, E. Agustsson, S. Gu, R. Timofte, L. Van, Carn: convolutional anchored regression network for fast and accurate single image super-resolution, in: European Conference on Computer Vision, 2018, pp. 166-181.
Kim, Kwon (b12) 2010; 32
B. Lim, S. Son, S. Nah, K.M. Lee, Enhanced deep residual networks for single image super-resolution, in: IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017, pp. 1132-1140.
C. Dong, C.C. Loy, K. He, X. Tang, Learning a deep convolutional network for image super-resolution, in: European Conference on Computer Vision, 2014, pp. 184-199.
Chan, Wang, Elgendy (b34) 2016; 3
Zhang, Wu (b4) 2008; 17
norm regularized discriminative feature selection for unsupervised learning, in: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, vol. 3, 2011, pp. 1589-1594.
Z. Hui, X. Wang, X. Gao, Fast and accurate single image super-resolution via information distillation network, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2018, pp. 723-731.
Freeman, Jones, Pasztor (b11) 2002; 22
W. Shi, J. Caballero, F. Huszar, J. Totz, Z. Wang, Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network, in: IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 1874-1883.
J. Kim, J.K. Lee, K.M. Lee, Deeply-recursive convolutional network for image super-resolution, in: IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 1637-1645.
Fang, Zhou, Shen, Jacquemin, Shao (b10) 2020; 50
Natarajan (b31) 1995; 24
D.P. Kingma, J.L. Ba, Adam: A method for stochastic optimization, in: the 32nd International Conference on Machine Learning, ICML 2015, 2015, pp. 1-15.
Yıldırım, Güngör (b2) 2012; 1
Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, Y. Fu, Image super-resolution using very deep residual channel attention networks, in: European Conference on Computer Vision, 2018, pp. 286-301.
Bevilacqua, Roumy, Guillemot, Morel (b39) 2012; 135
Arbelaez, Maire, Fowlkes, Malik (b41) 2011; 33
Ren, He, Pu, Nguyen (b28) 2019; 99
Marquina, Osher (b6) 2008; 37
Y. Tai, J. Yang, X. Liu, C. Xu, MemNet: a persistent memory network for image restoration, in: IEEE International Conference on Computer Vision, 2017, pp. 4549-4557.
Z. Hui, X. Gao, Y. Yang, X. Wang, Lightweight image super-resolution with information multi-distillation network, in: ACM International Conference on Multimedia, 2019, pp. 2024-2032.
Wang, Chen, Hoi (b33) 2020; 99
Keys (b3) 1981; 29
Beck, Teboulle (b35) 2009; 2
R. Timofte, V. De Smet, L. Van Gool, A+: adjusted anchored neighborhood regression for fast super-resolution, in: Asian Conference on Computer Vision, vol. 9006, 2015, pp. 111-126.
Zhang, Wu (b5) 2006; 15
Y. Zhang, Y. Tian, Y. Kong, B. Zhong, Y. Fu, Residual dense network for image super-resolution, in: IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 2472-2481.
Y. Tai, J. Yang, X. Liu, Image super-resolution via deep recursive residual network, in: IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2790-2798.
J. Sun, J. Zhu, M.F. Tappen, Context-constrained hallucination for image super-resolution, in: IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp. 231-238.
J.B. Huang, A. Singh, N. Ahuja, Single image super-resolution from transformed self-exemplars, in: IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 5197-5206.
Hunter, Lange (b37) 2004; 58
Y. Yang, H.T. Shen, Z.G. Ma, H. Zi, X.F. Zhou
W.Z. Shi, J. Caballero, C. Ledig, X.H. Zhuang, W.J. Bai, K. Bhatia, A.M.S.M. Marvao, T. Dawes, D. Regan, D. Rueckert, Cardiac image super-resolution with global correspondence using multi-atlas patchmatch, in: International Conference on Medical Image Computing and Computer-Assisted Intervention, vol. 8151, 2013, pp. 9-16.
C. Dong, C.C. Loy, X. Tang, Accelerating the super-resolution convolutional neural network, in: European Conference on Computer Vision, 2016, pp. 391-407.
J. Kim, J.K. Lee, K.M. Lee, Accurate image super-resolution using very deep convolutional networks, in: IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 1646-1654.
M. Haris, G. Shakhnarovich, N. Ukita, Deep back-projection networks for super-resolution, in: IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1664-1673.
Goldstein, Osher (b36) 2009; 2
R. Timofte, S. Gu, L. Van Gool, L. Zhang, M.H. Yang, NTIRE 2018 challenge on single image super-resolution: methods and results, in: IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 965-976.
Wang, Wu, Pan (b9) 2014; 23
W.S. Lai, J.B. Huang, N. Ahuja, M.H. Yang, Deep Laplacian pyramid networks for fast and accurate super-resolution, in: IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 5835-5843.
Y.W. Li, S.H. Gu, K. Zhang, V.G. Luc, R. Timofte, DHP: differentiable meta pruning via hypernetworks, in: European Conference on Computer Vision, 2020, pp. 608-624.
R. Zeyde, M. Elad, M. Protter, On single image scale-up using sparse-representations, in: International Conference on Curves and Surfaces, 2010, pp. 711-730.
Dong, Wang, Yin, Shi, Wu, Lu (b29) 2019; 41
Zhang, Danelljan, Li, Timofte (b46) 2020
References_xml – volume: 24
  start-page: 227
  year: 1995
  end-page: 234
  ident: b31
  article-title: Sparse approximate solutions to linear systems
  publication-title: SIAM J. Comput.
– start-page: 1
  year: 2020
  end-page: 16
  ident: b46
  article-title: AIM 2020 challenge on efficient super-resolution: methods and results
– reference: W. Shi, J. Caballero, F. Huszar, J. Totz, Z. Wang, Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network, in: IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 1874-1883.
– reference: J.B. Huang, A. Singh, N. Ahuja, Single image super-resolution from transformed self-exemplars, in: IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 5197-5206.
– volume: 2
  start-page: 323
  year: 2009
  end-page: 343
  ident: b36
  article-title: The split Bregman method for
  publication-title: SIAM J. Imaging Sci.
– reference: Y. Li, E. Agustsson, S. Gu, R. Timofte, L. Van, Carn: convolutional anchored regression network for fast and accurate single image super-resolution, in: European Conference on Computer Vision, 2018, pp. 166-181.
– reference: J. Kim, J.K. Lee, K.M. Lee, Accurate image super-resolution using very deep convolutional networks, in: IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 1646-1654.
– volume: 23
  start-page: 5123
  year: 2014
  end-page: 5135
  ident: b9
  article-title: Fast image upsampling via the displacement field
  publication-title: IEEE Trans. Image Process.
– volume: 99
  start-page: 1
  year: 2019
  end-page: 14
  ident: b28
  article-title: Learning image profile enhancement and denoising statistics priors for single-image super-resolution
  publication-title: IEEE Trans. Cybern.
– volume: 22
  start-page: 56
  year: 2002
  end-page: 65
  ident: b11
  article-title: Example-based super-resolution
  publication-title: IEEE Comput. Graph. Appl.
– reference: R. Timofte, S. Gu, L. Van Gool, L. Zhang, M.H. Yang, NTIRE 2018 challenge on single image super-resolution: methods and results, in: IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 965-976.
– volume: 37
  start-page: 367
  year: 2008
  end-page: 382
  ident: b6
  article-title: Image super-resolution by TV-regularization and bregman iteration
  publication-title: J. Sci. Comput.
– reference: J. Li, F. Fang, K. Mei, G. Zhang, Multi-scale residual network for image super-resolution, in: European Conference on Computer Vision, 2018, pp. 517-532.
– reference: B. Lim, S. Son, S. Nah, K.M. Lee, Enhanced deep residual networks for single image super-resolution, in: IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017, pp. 1132-1140.
– reference: W.S. Lai, J.B. Huang, N. Ahuja, M.H. Yang, Deep Laplacian pyramid networks for fast and accurate super-resolution, in: IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 5835-5843.
– volume: 29
  start-page: 1153
  year: 1981
  end-page: 1160
  ident: b3
  article-title: Cubic convolution interpolation for digital image processing
  publication-title: IEEE Trans. Acoust.
– reference: Y.W. Li, S.H. Gu, K. Zhang, V.G. Luc, R. Timofte, DHP: differentiable meta pruning via hypernetworks, in: European Conference on Computer Vision, 2020, pp. 608-624.
– reference: R. Zeyde, M. Elad, M. Protter, On single image scale-up using sparse-representations, in: International Conference on Curves and Surfaces, 2010, pp. 711-730.
– reference: J. Kim, J.K. Lee, K.M. Lee, Deeply-recursive convolutional network for image super-resolution, in: IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 1637-1645.
– reference: D.P. Kingma, J.L. Ba, Adam: A method for stochastic optimization, in: the 32nd International Conference on Machine Learning, ICML 2015, 2015, pp. 1-15.
– reference: Y. Zhang, Y. Tian, Y. Kong, B. Zhong, Y. Fu, Residual dense network for image super-resolution, in: IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 2472-2481.
– volume: 33
  start-page: 898
  year: 2011
  end-page: 916
  ident: b41
  article-title: Contour detection and hierarchical image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 41
  start-page: 2305
  year: 2019
  end-page: 2318
  ident: b29
  article-title: Denoising prior driven deep neural network for image restoration
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 58
  start-page: 30
  year: 2004
  end-page: 37
  ident: b37
  article-title: A tutorial on MM algorithms
  publication-title: Am. Stat.
– volume: 1
  start-page: 75
  year: 2012
  end-page: 83
  ident: b2
  article-title: A novel image fusion method using IKONOS satellite images
  publication-title: J. Geod. Geoinf.
– volume: 135
  start-page: 1
  year: 2012
  end-page: 10
  ident: b39
  article-title: Low-complexity single-image super-resolution based on nonnegative neighbor embedding
  publication-title: Br. Mach. Vis. Conf.
– volume: 15
  start-page: 2226
  year: 2006
  end-page: 2238
  ident: b5
  article-title: An edge-guided image interpolation algorithm via directional filtering and data fusion
  publication-title: IEEE Trans. Image Process.
– volume: 50
  start-page: 997
  year: 2020
  end-page: 1008
  ident: b10
  article-title: Text image deblurring using kernel sparsity prior
  publication-title: IEEE Trans. Cybern.
– volume: 2
  start-page: 183
  year: 2009
  end-page: 202
  ident: b35
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM J. Imaging Sci.
– reference: C. Dong, C.C. Loy, K. He, X. Tang, Learning a deep convolutional network for image super-resolution, in: European Conference on Computer Vision, 2014, pp. 184-199.
– reference: J. Sun, J. Sun, Z. Xu, H.Y. Shum, Image super-resolution using gradient profile prior, in IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1-8.
– reference: Z. Hui, X. Gao, Y. Yang, X. Wang, Lightweight image super-resolution with information multi-distillation network, in: ACM International Conference on Multimedia, 2019, pp. 2024-2032.
– reference: R. Timofte, V. De Smet, L. Van Gool, A+: adjusted anchored neighborhood regression for fast super-resolution, in: Asian Conference on Computer Vision, vol. 9006, 2015, pp. 111-126.
– reference: Z. Hui, X. Wang, X. Gao, Fast and accurate single image super-resolution via information distillation network, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2018, pp. 723-731.
– reference: Y. Tai, J. Yang, X. Liu, Image super-resolution via deep recursive residual network, in: IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2790-2798.
– reference: Y. Yang, H.T. Shen, Z.G. Ma, H. Zi, X.F. Zhou,
– volume: 3
  start-page: 84
  year: 2016
  end-page: 98
  ident: b34
  article-title: Plug-and-play ADMM for image restoration: fixed-point convergence and applications
  publication-title: IEEE Trans. Comput. Imaging
– volume: 32
  start-page: 1127
  year: 2010
  end-page: 1133
  ident: b12
  article-title: Single-image super-resolution using sparse regression and natural image prior
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: C. Dong, C.C. Loy, X. Tang, Accelerating the super-resolution convolutional neural network, in: European Conference on Computer Vision, 2016, pp. 391-407.
– reference: Y. Tai, J. Yang, X. Liu, C. Xu, MemNet: a persistent memory network for image restoration, in: IEEE International Conference on Computer Vision, 2017, pp. 4549-4557.
– reference: E.J. Candès, Compressive sampling, in: Proc. Int. Congr. Math., ICM 2006, vol. 3, 2006, pp. 1433-1452.
– volume: 17
  start-page: 887
  year: 2008
  end-page: 896
  ident: b4
  article-title: Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation
  publication-title: IEEE Trans. Image Process.
– volume: 99
  start-page: 1
  year: 2020
  end-page: 22
  ident: b33
  article-title: Deep learning for image super-resolution: a survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: M. Haris, G. Shakhnarovich, N. Ukita, Deep back-projection networks for super-resolution, in: IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1664-1673.
– reference: W.Z. Shi, J. Caballero, C. Ledig, X.H. Zhuang, W.J. Bai, K. Bhatia, A.M.S.M. Marvao, T. Dawes, D. Regan, D. Rueckert, Cardiac image super-resolution with global correspondence using multi-atlas patchmatch, in: International Conference on Medical Image Computing and Computer-Assisted Intervention, vol. 8151, 2013, pp. 9-16.
– reference: J. Sun, J. Zhu, M.F. Tappen, Context-constrained hallucination for image super-resolution, in: IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp. 231-238.
– reference: Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, Y. Fu, Image super-resolution using very deep residual channel attention networks, in: European Conference on Computer Vision, 2018, pp. 286-301.
– reference: -norm regularized discriminative feature selection for unsupervised learning, in: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, vol. 3, 2011, pp. 1589-1594.
SSID ssj0002218
Score 2.4190311
Snippet Most existing deep learning based single-image super-resolution (SISR) methods mainly improve the reconstruction performances from the perspective of...
SourceID proquest
elsevier
SourceType Aggregation Database
Publisher
StartPage 1
SubjectTerms [formula omitted] model-driven
Algorithms
Data
Deep learning
Denoising
Denoising network
Fidelity
Grammatical aspect
Image resolution
Iteration algorithm
Iterative algorithms
Iterative methods
Machine learning
Majorization–minimization algorithm
Minimization
Networks
Noise reduction
Optimization
Outliers (statistics)
Prior knowledge
Recursion
Soft thresholding operator
Super-resolution
Title L1 model-driven recursive multi-scale denoising network for image super-resolution
URI https://dx.doi.org/10.1016/j.knosys.2021.107115
https://www.proquest.com/docview/2548693630
Volume 225
WOSCitedRecordID wos000659444400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLeg48CFb8TGQD5wQ54cO43t44TGZzUBG6jaJXISZ-0QzpY2sD-f54-kpb0AEhcrclPbfe_X9-X3bIRegAWeaM41cRx324wl0UwJIupSFaoap8ZXyH2diONjOZ2qjzGgv_DXCQhr5fW1uvyvrIY-YLYrnf0Ldg-DQgc8A9OhBbZD-0eMnyThehtStU6SvWxdRN0nqfvkQbIArrhiKdvMfZzAhkRwn284_-5SeBbdpWkJ-OFxnesG7Ic-Bkec_qviSdCDYX7SeSl2Nmvseb0C3tlMhx0eAONPM191N1143djzWTdoiDfh7U-wvKtetcbIBPOhVjpehcu2SmZi3JESQeMpsyZIXSnAzE-pWhfLLBREb4n4EG24OPhmG_iJB25i6BRJqArdODz7xE3nZgPPlnIhs5toh4mxkiO0c_juaPp-0NqM-VjwsLy-zNLnAm7P9ZvtsqHFvWlyeg_diT4FPgxYuI9uGPsA3e3v68BRfD9EnycJXocGHqCB16CBB2jgCA0M0MAeGngTGo_Ql9dHp6_ekninBjFgnC2J5qXMxlVtqNIZyGZu3E58rQrJCm5qcPcrqiktBVjuRqYFtEA4BnZqXbo9ff4YjWxjzROEU1764xmlBh8evlHAMAkXvEzhSTK9i0RPojyac8FMy4GVeZ9deJEH4uaOuHkg7i7a7ymax38WfA6-daZ4xunePw_8FN1eAXUfjZZtZ56hW-WP5XzRPo-Q-AU7u3yL
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=L1+model-driven+recursive+multi-scale+denoising+network+for+image+super-resolution&rft.jtitle=Knowledge-based+systems&rft.au=Sun%2C+Zhongfan&rft.au=Zhao%2C+Jianwei&rft.au=Zhou%2C+Zhenghua&rft.au=Gao%2C+Qingqing&rft.date=2021-08-05&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=225&rft_id=info:doi/10.1016%2Fj.knosys.2021.107115&rft.externalDocID=S0950705121003786
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon