Utilizing Student Time Series Behaviour in Learning Management Systems for Early Prediction of Course Performance
Predictive analytics in higher education has become increasingly popular in recent years with the growing availability of educational big data. Particularly, a wealth of student activity data is available from learning management systems (LMSs) in most academic institutions. However, previous invest...
Uloženo v:
| Vydáno v: | Journal of Learning Analytics Ročník 7; číslo 2; s. 1 - 17 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Society for Learning Analytics Research
01.01.2020
|
| Témata: | |
| ISSN: | 1929-7750, 1929-7750 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Predictive analytics in higher education has become increasingly popular in recent years with the growing availability of educational big data. Particularly, a wealth of student activity data is available from learning management systems (LMSs) in most academic institutions. However, previous investigations into predictive analytics in higher education using LMS activity data did not adequately accommodate student behaviours in the form of time series. In this study, we have applied a deep learning approach--long short-term memory (LSTM) networks--to analyze student online temporal behaviours using their LMS data for the early prediction of course performance. To reveal the potential of the deep learning approach in predictive analytics, we compared LSTM networks with eight conventional machine-learning classifiers in terms of the prediction performance as measured by the area under the ROC (receiver operating characteristic) curve (AUC) scores. Results indicate that using the deep learning approach, time series information about click frequencies successfully provided early detection of at-risk students with moderate prediction accuracy. In addition, the deep learning approach showed higher prediction performance and stronger generalizability than the machine learning classifiers. |
|---|---|
| AbstractList | Predictive analytics in higher education has become increasingly popular in recent years with the growing availability of educational big data. Particularly, a wealth of student activity data is available from learning management systems (LMSs) in most academic institutions. However, previous investigations into predictive analytics in higher education using LMS activity data did not adequately accommodate student behaviours in the form of time series. In this study, we have applied a deep learning approach--long short-term memory (LSTM) networks--to analyze student online temporal behaviours using their LMS data for the early prediction of course performance. To reveal the potential of the deep learning approach in predictive analytics, we compared LSTM networks with eight conventional machine-learning classifiers in terms of the prediction performance as measured by the area under the ROC (receiver operating characteristic) curve (AUC) scores. Results indicate that using the deep learning approach, time series information about click frequencies successfully provided early detection of at-risk students with moderate prediction accuracy. In addition, the deep learning approach showed higher prediction performance and stronger generalizability than the machine learning classifiers. |
| Audience | Higher Education Postsecondary Education |
| Author | Chen, Fu Cui, Ying |
| Author_xml | – sequence: 1 fullname: Chen, Fu – sequence: 2 fullname: Cui, Ying |
| BackLink | http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1273765$$DView record in ERIC |
| BookMark | eNpNj01PwkAURScGExHZujOZP9A6H50OXSJBlNRIAqzJa-cNjqFTnSkm-Ost0YWrexfn3ORek4FvPRJyy1nKJzmb3C_LaSqYYKkWKb8gQ16IItFascG_fkXGMb4zxqTgUhZsSD63nTu4b-f3dN0dDfqOblyDdI3BYaQP-AZfrj0G6jwtEYI_ky_gYY_NGV6fYodNpLYNdA7hcKKrgMbVnWs9bS2d9W5EusLQEw34Gm_IpYVDxPFfjsj2cb6ZPSXl6-J5Ni0TFFx3ieTVpFKASloulZFWZaBUhZU1Bct0DYWxUDOT50YalBxFDqYGK3OVIRcgR-Tud7d_Uu8-gmsgnHbzJRda6lzJHzyKXj0 |
| ContentType | Journal Article |
| DBID | ERI GA5 |
| DOI | 10.18608/JLA.2020.72.1 |
| DatabaseName | ERIC ERIC - Full Text Only (Discovery) |
| DatabaseTitle | ERIC |
| DatabaseTitleList | ERIC |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1929-7750 |
| ERIC | EJ1273765 |
| ExternalDocumentID | EJ1273765 |
| GeographicLocations | Canada |
| GeographicLocations_xml | – name: Canada |
| GroupedDBID | ABOPQ ALMA_UNASSIGNED_HOLDINGS ERI FRS GA5 M~E OK1 |
| ID | FETCH-LOGICAL-e217t-31b8b5ae53f135d3f54a55bebfd9047ca9dfac0d66d3de31e26adcaf3654e12a3 |
| ISICitedReferencesCount | 54 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000573840100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1929-7750 |
| IngestDate | Tue Dec 02 16:48:29 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-e217t-31b8b5ae53f135d3f54a55bebfd9047ca9dfac0d66d3de31e26adcaf3654e12a3 |
| OpenAccessLink | http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1273765 |
| PageCount | 17 |
| ParticipantIDs | eric_primary_EJ1273765 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of Learning Analytics |
| PublicationYear | 2020 |
| Publisher | Society for Learning Analytics Research |
| Publisher_xml | – name: Society for Learning Analytics Research |
| SSID | ssj0003213390 |
| Score | 2.434169 |
| Snippet | Predictive analytics in higher education has become increasingly popular in recent years with the growing availability of educational big data. Particularly, a... |
| SourceID | eric |
| SourceType | Open Access Repository |
| StartPage | 1 |
| SubjectTerms | Foreign Countries Grade Prediction Integrated Learning Systems Learning Analytics Student Behavior Time on Task Undergraduate Students |
| Title | Utilizing Student Time Series Behaviour in Learning Management Systems for Early Prediction of Course Performance |
| URI | http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1273765 |
| Volume | 7 |
| WOSCitedRecordID | wos000573840100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1929-7750 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003213390 issn: 1929-7750 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Na9wwEBXbtJBeQkob-o0OvXprS5ZlHUNICKEJOSSQnoJkjcpCcJKNNyw99Ld3JMuy2ybQHnoxRoaxmXmMRvKbJ0I-gdRM1XmdmbyxWSmcyZTSeFdKbQoFTDkbDpuQJyf1xYU6nc3WQy_M_ZVs23q9Vjf_NdQ4hsH2rbP_EO5kFAfwHoOOVww7Xv8q8Ofd4mrxvRfaDrqVoc3DJwVcFA96iCvPQh_EVb9NSDCDhHmgH_bqx6dL_zNnqCz9IXd34JnzQ8PBI_VtMh50T7oJq34vdoQcrNLIKpAKvg7zaNyGYPlv2xBTjumf9hONcJJpsS7D0r5XnZ3DA2MxPcsJCtkk1RYPTgB1Fboajr7szv1XziWbF-NUlwiI-0cF1m2yEk_IUyaF8vnw-Me4O8cZrt3DBl36pqj46V_w-Rfzm2QzmYus-UmJcrZNtqLv6W6PiRdkBu1LcpvwQCMeqMcD7fFAEx7ooqWDS-mIBxrxQNHlNOCBjnig1472eKATPLwi5wf7Z3uHWTxnIwNckHY4DZvaCA2Cu4ILy50otRAGjLMqL2WjlXW6yW1VWW6BF8AqbRvteCVKKJjmO2SjvW7hNaESOBihHJahpmRS1-AApwXwlWFtXfGG7Hj_XN70UiqXyXFvH3vwjjwf4faebHTLFXwgz5r7bnG3_Bii9hOtH2S8 |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Utilizing+Student+Time+Series+Behaviour+in+Learning+Management+Systems+for+Early+Prediction+of+Course+Performance&rft.jtitle=Journal+of+Learning+Analytics&rft.au=Chen%2C+Fu&rft.au=Cui%2C+Ying&rft.date=2020-01-01&rft.pub=Society+for+Learning+Analytics+Research&rft.issn=1929-7750&rft.eissn=1929-7750&rft.volume=7&rft.issue=2&rft.spage=1&rft_id=info:doi/10.18608%2FJLA.2020.72.1&rft.externalDocID=EJ1273765 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1929-7750&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1929-7750&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1929-7750&client=summon |