Utilizing Student Time Series Behaviour in Learning Management Systems for Early Prediction of Course Performance

Predictive analytics in higher education has become increasingly popular in recent years with the growing availability of educational big data. Particularly, a wealth of student activity data is available from learning management systems (LMSs) in most academic institutions. However, previous invest...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of Learning Analytics Ročník 7; číslo 2; s. 1 - 17
Hlavní autoři: Chen, Fu, Cui, Ying
Médium: Journal Article
Jazyk:angličtina
Vydáno: Society for Learning Analytics Research 01.01.2020
Témata:
ISSN:1929-7750, 1929-7750
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Predictive analytics in higher education has become increasingly popular in recent years with the growing availability of educational big data. Particularly, a wealth of student activity data is available from learning management systems (LMSs) in most academic institutions. However, previous investigations into predictive analytics in higher education using LMS activity data did not adequately accommodate student behaviours in the form of time series. In this study, we have applied a deep learning approach--long short-term memory (LSTM) networks--to analyze student online temporal behaviours using their LMS data for the early prediction of course performance. To reveal the potential of the deep learning approach in predictive analytics, we compared LSTM networks with eight conventional machine-learning classifiers in terms of the prediction performance as measured by the area under the ROC (receiver operating characteristic) curve (AUC) scores. Results indicate that using the deep learning approach, time series information about click frequencies successfully provided early detection of at-risk students with moderate prediction accuracy. In addition, the deep learning approach showed higher prediction performance and stronger generalizability than the machine learning classifiers.
AbstractList Predictive analytics in higher education has become increasingly popular in recent years with the growing availability of educational big data. Particularly, a wealth of student activity data is available from learning management systems (LMSs) in most academic institutions. However, previous investigations into predictive analytics in higher education using LMS activity data did not adequately accommodate student behaviours in the form of time series. In this study, we have applied a deep learning approach--long short-term memory (LSTM) networks--to analyze student online temporal behaviours using their LMS data for the early prediction of course performance. To reveal the potential of the deep learning approach in predictive analytics, we compared LSTM networks with eight conventional machine-learning classifiers in terms of the prediction performance as measured by the area under the ROC (receiver operating characteristic) curve (AUC) scores. Results indicate that using the deep learning approach, time series information about click frequencies successfully provided early detection of at-risk students with moderate prediction accuracy. In addition, the deep learning approach showed higher prediction performance and stronger generalizability than the machine learning classifiers.
Audience Higher Education
Postsecondary Education
Author Chen, Fu
Cui, Ying
Author_xml – sequence: 1
  fullname: Chen, Fu
– sequence: 2
  fullname: Cui, Ying
BackLink http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1273765$$DView record in ERIC
BookMark eNpNj01PwkAURScGExHZujOZP9A6H50OXSJBlNRIAqzJa-cNjqFTnSkm-Ost0YWrexfn3ORek4FvPRJyy1nKJzmb3C_LaSqYYKkWKb8gQ16IItFascG_fkXGMb4zxqTgUhZsSD63nTu4b-f3dN0dDfqOblyDdI3BYaQP-AZfrj0G6jwtEYI_ky_gYY_NGV6fYodNpLYNdA7hcKKrgMbVnWs9bS2d9W5EusLQEw34Gm_IpYVDxPFfjsj2cb6ZPSXl6-J5Ni0TFFx3ieTVpFKASloulZFWZaBUhZU1Bct0DYWxUDOT50YalBxFDqYGK3OVIRcgR-Tud7d_Uu8-gmsgnHbzJRda6lzJHzyKXj0
ContentType Journal Article
DBID ERI
GA5
DOI 10.18608/JLA.2020.72.1
DatabaseName ERIC
ERIC - Full Text Only (Discovery)
DatabaseTitle ERIC
DatabaseTitleList ERIC
DeliveryMethod fulltext_linktorsrc
EISSN 1929-7750
ERIC EJ1273765
ExternalDocumentID EJ1273765
GeographicLocations Canada
GeographicLocations_xml – name: Canada
GroupedDBID ABOPQ
ALMA_UNASSIGNED_HOLDINGS
ERI
FRS
GA5
M~E
OK1
ID FETCH-LOGICAL-e217t-31b8b5ae53f135d3f54a55bebfd9047ca9dfac0d66d3de31e26adcaf3654e12a3
ISICitedReferencesCount 54
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000573840100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1929-7750
IngestDate Tue Dec 02 16:48:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-e217t-31b8b5ae53f135d3f54a55bebfd9047ca9dfac0d66d3de31e26adcaf3654e12a3
OpenAccessLink http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1273765
PageCount 17
ParticipantIDs eric_primary_EJ1273765
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of Learning Analytics
PublicationYear 2020
Publisher Society for Learning Analytics Research
Publisher_xml – name: Society for Learning Analytics Research
SSID ssj0003213390
Score 2.434169
Snippet Predictive analytics in higher education has become increasingly popular in recent years with the growing availability of educational big data. Particularly, a...
SourceID eric
SourceType Open Access Repository
StartPage 1
SubjectTerms Foreign Countries
Grade Prediction
Integrated Learning Systems
Learning Analytics
Student Behavior
Time on Task
Undergraduate Students
Title Utilizing Student Time Series Behaviour in Learning Management Systems for Early Prediction of Course Performance
URI http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1273765
Volume 7
WOSCitedRecordID wos000573840100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1929-7750
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003213390
  issn: 1929-7750
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEA7rA_QiiopvcvDatW2SpjmKKCIqHhT0JNkmkQWpunZl8eBvd5KmaX2BHryUkoVpmfl2Mkm_-YLQbsxiY0xOIyWUiKhJDfznSBIRIk1ewARFqXKHTfDz8_z6Wlz0epOmF-blnpdlPpmIx38NNYxBsG3r7B_CHYzCANxD0OEKYYfrrwJ_VQ3vh6-10LbTrXRtHjYpwKK40UMcWxZ6I6561yHBNBLmjn5Yqx9fjOzHnKaytIfcPWvLnG8aDn6ob4Nxp3tSdVj1B74j5GgcRsaOVHDTzKN-GyKNP21DdDmmX-0HGmEn00JdBqV9rTrb19-M-fTMOyhMO6k2-XYCyDPX1XByut-3b9nnaT9pp7pAQDw8SaBu4xmbQjMpZ8Lmw7O3dneOpLB2dxt04Z284qd9wN4H83NoLpjzrPlOiXK5iBa87_F-jYkl1NPlMnoKeMAeD9jiAdd4wAEPeFjixqW4xQP2eMDgcuzwgFs84AeDazzgDh5W0NXR4eXBceTP2Yg0LEgrmIYH-YBJzYhJCFPEMCoZG-iBUSKmvJBCGVnEKssUUZokOs2kKqQhGaM6SSVZRdPlQ6nXEJZQvxtlCp7RjHJhcsILZaCsh3VBwUWyjlatf24faymV2-C4jZ9-2ETzLdy20HQ1GuttNFu8VMPn0Y6L2jsj4GPX
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Utilizing+Student+Time+Series+Behaviour+in+Learning+Management+Systems+for+Early+Prediction+of+Course+Performance&rft.jtitle=Journal+of+Learning+Analytics&rft.au=Chen%2C+Fu&rft.au=Cui%2C+Ying&rft.date=2020-01-01&rft.pub=Society+for+Learning+Analytics+Research&rft.issn=1929-7750&rft.eissn=1929-7750&rft.volume=7&rft.issue=2&rft.spage=1&rft_id=info:doi/10.18608%2FJLA.2020.72.1&rft.externalDocID=EJ1273765
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1929-7750&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1929-7750&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1929-7750&client=summon