A multi-objective optimization model based on mixed integer linear programming for sizing a hybrid PV-hydrogen storage system

In this paper, a multi-objective mixed-integer linear programming model is developed to design a hybrid PV-hydrogen renewable energy system considering two objective functions; minimizing total life costs and loss probability of power supply. The decisions of the hybrid system include the number of...

Full description

Saved in:
Bibliographic Details
Published in:International journal of hydrogen energy Vol. 48; no. 26; pp. 9748 - 9761
Main Authors: Mohammed, Awsan, Ghaithan, Ahmed M., Al-Hanbali, Ahmad, Attia, Ahmed M.
Format: Journal Article
Language:English
Published: Elsevier Ltd 26.03.2023
Subjects:
ISSN:0360-3199, 1879-3487
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, a multi-objective mixed-integer linear programming model is developed to design a hybrid PV-hydrogen renewable energy system considering two objective functions; minimizing total life costs and loss probability of power supply. The decisions of the hybrid system include the number of PV panels, the number of hydrogen tanks, the number of electrolyzers, the number of fuel cells, and quantity of hydrogen stored over time. An exact method embedded in GAMS software is used to solve the developed model. The model is validated using an electrical testing lab in Saudi Arabia with hourly power demand. Different plans are chosen from the obtained optimal Pareto solutions. For example, one of the plans found that a hybrid system with 212 PV panels, 617 hydrogen tanks, 30 electrolyzers, and 21 fuel cells is sufficient to satisfy the electrical testing lab load with an annual cost of $61663, the loss of power supply probability is 10%, and the CO2 saving of 214,882 kg of CO2. The results indicated the feasibility of combining an electrolyzer, hydrogen tank storage, and fuel cell with a renewable energy system; however, the cost of energy generated is still high because of the high investment cost. Furthermore, the findings revealed that hydrogen technologies are appealing as an energy storage solution for intermittent renewable energy systems and in other applications such as transportation, residential, and industrial sectors. In addition, the findings demonstrated the possibility of using renewable energy as a source of energy, namely, in Saudi Arabia. However, weather conditions, geomorphological conditions, and climatic dependence on hydrogen fuel cell technology can harm the energy yields produced by renewable energy systems. •Design a multi-objective hybrid PV-Hydrogen storage renewable energy system.•Evaluate the performance of the proposed model based on a real case study.•Help the decision-maker in analyzing alternative trade-offs.•The LCOE ranges between 0.143 and 0.160 $/kWh for generated plans.•The annual CO2 savings range between 197,351 and 227,905 kg of CO2.
AbstractList In this paper, a multi-objective mixed-integer linear programming model is developed to design a hybrid PV-hydrogen renewable energy system considering two objective functions; minimizing total life costs and loss probability of power supply. The decisions of the hybrid system include the number of PV panels, the number of hydrogen tanks, the number of electrolyzers, the number of fuel cells, and quantity of hydrogen stored over time. An exact method embedded in GAMS software is used to solve the developed model. The model is validated using an electrical testing lab in Saudi Arabia with hourly power demand. Different plans are chosen from the obtained optimal Pareto solutions. For example, one of the plans found that a hybrid system with 212 PV panels, 617 hydrogen tanks, 30 electrolyzers, and 21 fuel cells is sufficient to satisfy the electrical testing lab load with an annual cost of $61663, the loss of power supply probability is 10%, and the CO2 saving of 214,882 kg of CO2. The results indicated the feasibility of combining an electrolyzer, hydrogen tank storage, and fuel cell with a renewable energy system; however, the cost of energy generated is still high because of the high investment cost. Furthermore, the findings revealed that hydrogen technologies are appealing as an energy storage solution for intermittent renewable energy systems and in other applications such as transportation, residential, and industrial sectors. In addition, the findings demonstrated the possibility of using renewable energy as a source of energy, namely, in Saudi Arabia. However, weather conditions, geomorphological conditions, and climatic dependence on hydrogen fuel cell technology can harm the energy yields produced by renewable energy systems. •Design a multi-objective hybrid PV-Hydrogen storage renewable energy system.•Evaluate the performance of the proposed model based on a real case study.•Help the decision-maker in analyzing alternative trade-offs.•The LCOE ranges between 0.143 and 0.160 $/kWh for generated plans.•The annual CO2 savings range between 197,351 and 227,905 kg of CO2.
Author Attia, Ahmed M.
Al-Hanbali, Ahmad
Ghaithan, Ahmed M.
Mohammed, Awsan
Author_xml – sequence: 1
  givenname: Awsan
  orcidid: 0000-0001-6500-5994
  surname: Mohammed
  fullname: Mohammed, Awsan
  email: awsan.mohammed@kfupm.edu.sa
  organization: Construction Engineering & Management Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
– sequence: 2
  givenname: Ahmed M.
  orcidid: 0000-0002-2108-4077
  surname: Ghaithan
  fullname: Ghaithan, Ahmed M.
  organization: Construction Engineering & Management Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
– sequence: 3
  givenname: Ahmad
  orcidid: 0000-0001-7411-0614
  surname: Al-Hanbali
  fullname: Al-Hanbali, Ahmad
  organization: Industrial and Systems Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
– sequence: 4
  givenname: Ahmed M.
  orcidid: 0000-0003-4578-5537
  surname: Attia
  fullname: Attia, Ahmed M.
  organization: Industrial and Systems Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
BookMark eNo1kFtLwzAcxYNMcE6_guQLtObS65tjeIOBPqivIWn-6VLaZCR1uIHf3Rb16ZwDh__ld4kWzjtA6IaSlBJa3Hap7XZHDQ5SRhhLKUtJQc7QklZlnfCsKhdoSXhBEk7r-gJdxtgRQkuS1Uv0vcbDZz_axKsOmtEeAPv9aAd7kqP1Dg9eQ4-VjKDxHO3XZKwboYWAe-tABrwPvg1yGKxrsfEBR3uarcS7owpW49ePZLpvKoHDcfRBtoDjMY4wXKFzI_sI13-6Qu8P92-bp2T78vi8WW8TYJSNSalIRSujWdUQU_OCSmWMlnnRcJXLDEyWyUYVZVPmtFIN8EwZnUtTQFkVjNd8he5-58K05GAhiNhYcA1oG6avhfZWUCJmnKIT_zjFjFNQJiac_AcwMHJb
ContentType Journal Article
Copyright 2022 Hydrogen Energy Publications LLC
Copyright_xml – notice: 2022 Hydrogen Energy Publications LLC
DOI 10.1016/j.ijhydene.2022.12.060
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3487
EndPage 9761
ExternalDocumentID S0360319922057779
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
TN5
XPP
ZMT
~G-
ID FETCH-LOGICAL-e212t-7b0818fd28c0f9361abffda56c3b5a4ef44acb67c7518bce34bfd5af6e7862393
ISICitedReferencesCount 62
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000949954200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-3199
IngestDate Fri Feb 23 02:38:42 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 26
Keywords Hydrogen storage
Multi-objective optimization
Mixed integer linear programming
Photovoltaic system
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-e212t-7b0818fd28c0f9361abffda56c3b5a4ef44acb67c7518bce34bfd5af6e7862393
ORCID 0000-0001-6500-5994
0000-0001-7411-0614
0000-0002-2108-4077
0000-0003-4578-5537
PageCount 14
ParticipantIDs elsevier_sciencedirect_doi_10_1016_j_ijhydene_2022_12_060
PublicationCentury 2000
PublicationDate 2023-03-26
PublicationDateYYYYMMDD 2023-03-26
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-26
  day: 26
PublicationDecade 2020
PublicationTitle International journal of hydrogen energy
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Baghaee, Mirsalim, Gharehpetian, Talebi (bib33) 2016; 115
Okundamiya (bib30) 2021; 46
Karacavus, Aydın (bib17) Dec. 2020; 45
Lambert, Roche, Jemeï, Ortega, Hissel (bib23) 2021; 2
Ghaithan, Mohammed, Al-Hanbali, Attia, Saleh (bib48) 2022; 251
Gahleitner (bib51) 2013; 38
B. Ai, H. Yang, H. Shen, X. L.-R. Energy, and U. 2003‏, “Computer-aided design of PV/wind hybrid system‏,” Elsevier, vol. 28, pp. 1491–1512, 2003.
Zhang, Shi, Maleki, Rosen (bib22) 2020; 156
Damour, Grondin, Hilairet, Benne (bib24) 2021; 14
Alturki, Al-Shamma’a, Farh, AlSharabi (bib13) 2021; 45
Kyriakopoulos, Arabatzis (bib53) 2016; 56
Zhang, Maleki, Rosen, Liu (bib50) 2018; 163
Home | renewable resource atlas.
Roszkowska (bib46) 2011; 6
Attia, Al Hanbali, Saleh, Alsawafy, Ghaithan, Mohammed (bib32) 2021; 229
Kyriakopoulos, Arabatzis (bib3) 2016; 56
Kaviani, Riahy, Kouhsari (bib4) 2009; 34
(accessed August. August, 2020).
Lokar, Virtič (bib16) Dec. 2020; 45
González, Llerena, Pérez, Iglesias, Macho (bib52) 2015; 40
Zhang, Han, Sun, Li, Tan, Yan, Dong (bib6) 2017
Sinha, Chandel (bib36) 2015; 50
.
Kyriakopoulos (bib39) 2021
Mavrotas, Florios (bib44) 2013; 219
Aki, Sugimoto, Sugai, Toda, Kobayashi, Ishida (bib18) Aug. 2018; 43
Hassan, Jaszczur, Hafedh, Abbas, Abdulateef, Hasan, Mohamad (bib26) Apr. 2022; 47
Marocco, Ferrero, Lanzini, Santarelli (bib20) Feb. 2022; 46
Xiang, Cai, Liu, Zhang (bib25) 2021; 283
Mehrjerdi (bib28) 2020; 156
Ramadan (bib2) 2021; 46
Hemmati, Mehrjerdi, Bornapour (bib11) 2020; 154
Kharel, Shabani (bib37) 2018; 11
Maleki, Khajeh, Rosen (bib27) 2017; 34
Barhoumi, Okonkwo, Ben Belgacem, Zghaibeh, Tlili (bib15) Sep. 2022; 47
Moghaddam, Kalam, Nowdeh, Ahmadi, Babanezhad, Saha (bib9) 2019; 135
Zhang, Shi, Maleki, Rosen (bib49) 2020; 156
Mehrjerdi (bib8) 2019; 44
Puranen, Kosonen, Ahola (bib41) 2021; 213
García Clúa, Mantz, De Battista (bib31) Jun. 2018; vol. 166
Ma, Javed (bib10) 2019; 182
Al-Shamma’a, Alturki, Farh (bib14) 2020; 4
Ndwali, Njiri, Wanjiru (bib34) 2020; 148
Tzeng, Huang (bib45) 2011
Ghorbani, Kasaeian, Toopshekan, Bahrami, Maghami (bib7) 2018; 154
Ahmadi, Abdi (bib5) 2016; 134
Ragazou, Passas, Garefalakis, Zafeiriou, Kyriakopoulos (bib40) Jan. 2022; 15
Saudi Arabia NC3_22 dec 2016.pdf.” Accessed: Nov. 12, 2022. [Online]. Available
Zhang, Maleki, Rosen, Liu (bib38) 2018; 163
Alturki, Mh Farh, Al-Shamma’a, AlSharabi (bib12) 2020; 9
Abe, Popoola, Ajenifuja, Popoola (bib54) 2019; 44
Saini, Gidwani (bib21) Jan. 2022; 45
Park (bib43) 2012
Coppitters, De Paepe, Contino (bib29) 2020; 213
Xu, Hu, Liu, Zhang, Du, Chen, Abulanwar (bib35) 2022; 47
Dahbi, Aziz, Messaoudi, Mazozi, Kassmi, Benazzi (bib19) 2018; 43
References_xml – volume: 229
  year: 2021
  ident: bib32
  article-title: A multi-objective optimization model for sizing decisions of a grid-connected photovoltaic system
  publication-title: Energy
– volume: 34
  start-page: 2380
  year: 2009
  end-page: 2390
  ident: bib4
  article-title: Optimal design of a reliable hydrogen-based stand-alone wind/PV generating system, considering component outages
  publication-title: Renew Energy
– volume: 45
  start-page: 34608
  year: Dec. 2020
  end-page: 34619
  ident: bib17
  article-title: Hydrogen production and storage analysis of a system by using TRNSYS
  publication-title: Int J Hydrogen Energy
– volume: 2
  start-page: 207
  year: 2021
  end-page: 224
  ident: bib23
  article-title: Combined cooling and power management strategy for a standalone house using hydrogen and solar energy
  publication-title: Hydro
– volume: 134
  start-page: 366
  year: 2016
  end-page: 374
  ident: bib5
  article-title: Application of the Hybrid Big Bang–Big Crunch algorithm for optimal sizing of a stand-alone hybrid PV/wind/battery system
  publication-title: Sol Energy
– volume: 182
  start-page: 178
  year: 2019
  end-page: 190
  ident: bib10
  article-title: Integrated sizing of hybrid PV-wind-battery system for remote island considering the saturation of each renewable energy resource
  publication-title: Energy Convers Manag
– volume: 154
  start-page: 1180
  year: 2020
  end-page: 1187
  ident: bib11
  article-title: Hybrid hydrogen-battery storage to smooth solar energy volatility and energy arbitrage considering uncertain electrical-thermal loads
  publication-title: Renew Energy
– volume: 4
  start-page: 31
  year: 2020
  end-page: 43
  ident: bib14
  article-title: Techno-economic assessment for energy transition from diesel-based to hybrid energy system-based off-grids in Saudi Arabia
  publication-title: Energy Transitions
– volume: 163
  start-page: 191
  year: 2018
  end-page: 207
  ident: bib38
  article-title: Optimization with a simulated annealing algorithm of a hybrid system for renewable energy including battery and hydrogen storage
  publication-title: Energy
– volume: 156
  start-page: 1203
  year: 2020
  end-page: 1214
  ident: bib22
  article-title: Optimal location and size of a grid-independent solar/hydrogen system for rural areas using an efficient heuristic approach
  publication-title: Renew Energy
– volume: 163
  start-page: 191
  year: 2018
  end-page: 207
  ident: bib50
  article-title: Optimization with a simulated annealing algorithm of a hybrid system for renewable energy including battery and hydrogen storage
  publication-title: Energy
– start-page: 1
  year: 2017
  end-page: 5
  ident: bib6
  article-title: Optimal operation of wind-solar-hydrogen storage system based on energy hub
  publication-title: IEEE conference on energy internet and energy system integration (EI2)
– volume: 45
  year: Jan. 2022
  ident: bib21
  article-title: An investigation for battery energy storage system installation with renewable energy resources in distribution system by considering residential, commercial and industrial load models
  publication-title: J Energy Storage
– year: 2011
  ident: bib45
  article-title: Multiple attribute decision making: methods and applications
– reference: B. Ai, H. Yang, H. Shen, X. L.-R. Energy, and U. 2003‏, “Computer-aided design of PV/wind hybrid system‏,” Elsevier, vol. 28, pp. 1491–1512, 2003.
– reference: Saudi Arabia NC3_22 dec 2016.pdf.” Accessed: Nov. 12, 2022. [Online]. Available:
– volume: 38
  start-page: 2039
  year: 2013
  end-page: 2061
  ident: bib51
  article-title: Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications
  publication-title: Int J Hydrogen Energy
– volume: 156
  start-page: 1203
  year: 2020
  end-page: 1214
  ident: bib49
  article-title: Optimal location and size of a grid-independent solar/hydrogen system for rural areas using an efficient heuristic approach
  publication-title: Renew Energy
– volume: 156
  start-page: 183
  year: 2020
  end-page: 192
  ident: bib28
  article-title: Peer-to-peer home energy management incorporating hydrogen storage system and solar generating units
  publication-title: Renew Energy
– volume: 115
  start-page: 1022
  year: 2016
  end-page: 1041
  ident: bib33
  article-title: Reliability/cost-based multi-objective Pareto optimal design of stand-alone wind/PV/FC generation microgrid system
  publication-title: Energy
– volume: 148
  start-page: 1256
  year: 2020
  end-page: 1265
  ident: bib34
  article-title: Multi-objective optimal sizing of grid connected photovoltaic batteryless system minimizing the total life cycle cost and the grid energy
  publication-title: Renew Energy
– volume: 34
  start-page: 278
  year: 2017
  end-page: 292
  ident: bib27
  article-title: Two heuristic approaches for the optimization of grid-connected hybrid solar–hydrogen systems to supply residential thermal and electrical loads
  publication-title: Sustain Cities Soc
– volume: 43
  start-page: 14892
  year: Aug. 2018
  end-page: 14904
  ident: bib18
  article-title: Optimal operation of a photovoltaic generation-powered hydrogen production system at a hydrogen refueling station
  publication-title: Int J Hydrogen Energy
– volume: 43
  start-page: 5283
  year: 2018
  end-page: 5299, Mar
  ident: bib19
  article-title: Management of excess energy in a photovoltaic/grid system by production of clean hydrogen
  publication-title: Int J Hydrogen Energy
– volume: 46
  year: Feb. 2022
  ident: bib20
  article-title: The role of hydrogen in the optimal design of off-grid hybrid renewable energy systems
  publication-title: J Energy Storage
– volume: 56
  start-page: 1044
  year: 2016
  end-page: 1067, Apr
  ident: bib3
  article-title: Electrical energy storage systems in electricity generation: energy policies, innovative technologies, and regulatory regimes
  publication-title: Renew Sustain Energy Rev
– volume: 213
  year: 2020
  ident: bib29
  article-title: Robust design optimization and stochastic performance analysis of a grid-connected photovoltaic system with battery storage and hydrogen storage
  publication-title: Energy
– volume: 46
  start-page: 30547
  year: 2021
  end-page: 30558
  ident: bib2
  article-title: A review on coupling Green sources to Green storage (G2G): case study on solar-hydrogen coupling
  publication-title: Int J Hydrogen Energy
– volume: 44
  start-page: 11574
  year: 2019
  end-page: 11583
  ident: bib8
  article-title: Off-grid solar powered charging station for electric and hydrogen vehicles including fuel cell and hydrogen storage
  publication-title: Int J Hydrogen Energy
– volume: 213
  start-page: 246
  year: 2021
  end-page: 259
  ident: bib41
  article-title: Technical feasibility evaluation of a solar PV based off-grid domestic energy system with battery and hydrogen energy storage in northern climates
  publication-title: Sol Energy
– volume: 11
  start-page: 2825
  year: 2018
  ident: bib37
  article-title: Hydrogen as a long-term large-scale energy storage solution to support renewables
  publication-title: Energies
– reference: (accessed August. August, 2020).
– volume: 50
  start-page: 755
  year: 2015
  end-page: 769
  ident: bib36
  article-title: Review of recent trends in optimization techniques for solar photovoltaic–wind based hybrid energy systems
  publication-title: Renew Sustain Energy Rev
– volume: 46
  start-page: 30539
  year: 2021
  end-page: 30546
  ident: bib30
  article-title: Size optimization of a hybrid photovoltaic/fuel cell grid connected power system including hydrogen storage
  publication-title: Int J Hydrogen Energy
– volume: 47
  start-page: 4426
  year: 2022
  end-page: 4440, Jan
  ident: bib35
  article-title: Optimal operational strategy for a future electricity and hydrogen supply system in a residential area
  publication-title: Int J Hydrogen Energy
– volume: 45
  start-page: 605
  year: 2021
  end-page: 625
  ident: bib13
  article-title: Optimal sizing of autonomous hybrid energy system using supply-demand-based optimization algorithm
  publication-title: Int J Energy Res
– volume: 135
  start-page: 1412
  year: 2019
  end-page: 1434
  ident: bib9
  article-title: Optimal sizing and energy management of stand-alone hybrid photovoltaic/wind system based on hydrogen storage considering LOEE and LOLE reliability indices using flower pollination algorithm
  publication-title: Renew Energy
– year: 2012
  ident: bib43
  article-title: Fundamentals of engineering economics
– volume: 14
  start-page: 1628
  year: 2021
  ident: bib24
  article-title: Power management of a hybrid micro-grid with photovoltaic production and hydrogen storage
  publication-title: Energies
– volume: 56
  start-page: 1044
  year: 2016
  end-page: 1067
  ident: bib53
  article-title: Electrical energy storage systems in electricity generation: energy policies, innovative technologies, and regulatory regimes
  publication-title: Renew Sustain Energy Rev
– volume: 283
  year: 2021
  ident: bib25
  article-title: Techno-economic design of energy systems for airport electrification: a hydrogen-solar-storage integrated microgrid solution
  publication-title: Appl Energy
– volume: 6
  start-page: 200
  year: 2011
  end-page: 230
  ident: bib46
  article-title: Multi-criteria decision making models by applying the TOPSIS method to crisp and interval data
  publication-title: Multiple Criteria Decision Making/University of Economics in Katowice
– volume: 9
  start-page: 2045
  year: 2020
  ident: bib12
  article-title: Techno-economic optimization of small-scale hybrid energy systems using manta ray foraging optimizer
  publication-title: Electronics
– volume: 219
  start-page: 9652
  year: 2013
  end-page: 9669
  ident: bib44
  article-title: An improved version of the augmented ε-constraint method (AUGMECON2) for finding the exact pareto set in multi-objective integer programming problems
  publication-title: Appl Math Comput
– volume: 47
  start-page: 31964
  year: Sep. 2022
  end-page: 31973
  ident: bib15
  article-title: Optimal sizing of photovoltaic systems based green hydrogen refueling stations case study Oman
  publication-title: Int J Hydrogen Energy
– volume: 45
  start-page: 34566
  year: Dec. 2020
  end-page: 34578
  ident: bib16
  article-title: The potential for integration of hydrogen for complete energy self-sufficiency in residential buildings with photovoltaic and battery storage systems
  publication-title: Int J Hydrogen Energy
– volume: 40
  start-page: 5518
  year: 2015
  end-page: 5525
  ident: bib52
  article-title: Energy evaluation of a solar hydrogen storage facility: comparison with other electrical energy storage technologies
  publication-title: Int J Hydrogen Energy
– volume: 47
  start-page: 13710
  year: Apr. 2022
  end-page: 13731
  ident: bib26
  article-title: Optimizing a microgrid photovoltaic-fuel cell energy system at the highest renewable fraction
  publication-title: Int J Hydrogen Energy
– volume: 251
  year: 2022
  ident: bib48
  article-title: Multi-objective optimization of a photovoltaic-wind-grid connected system to power reverse osmosis desalination plant
  publication-title: Energy
– volume: 44
  start-page: 15072
  year: 2019
  end-page: 15086
  ident: bib54
  article-title: Hydrogen energy, economy and storage: review and recommendation
  publication-title: Int J Hydrogen Energy
– volume: 15
  year: Jan. 2022
  ident: bib40
  article-title: The determinants of the environmental performance of EU financial institutions: an empirical study with a GLM model
  publication-title: Energies
– reference: .
– volume: 154
  start-page: 581
  year: 2018
  end-page: 591
  ident: bib7
  article-title: Optimizing a hybrid wind-PV-battery system using GA-PSO and MOPSO for reducing cost and increasing reliability
  publication-title: Energy
– volume: vol. 166
  start-page: 402
  year: Jun. 2018
  end-page: 408
  ident: bib31
  publication-title: Optimal sizing of a grid-assisted wind-hydrogen system
– start-page: 357
  year: 2021
  end-page: 389
  ident: bib39
  article-title: 15 - should low carbon energy technologies be envisaged in the context of sustainable energy systems?
  publication-title: Low carbon energy technologies in sustainable energy systems
– reference: Home | renewable resource atlas.”
SSID ssj0017049
Score 2.6061888
Snippet In this paper, a multi-objective mixed-integer linear programming model is developed to design a hybrid PV-hydrogen renewable energy system considering two...
SourceID elsevier
SourceType Publisher
StartPage 9748
SubjectTerms Hydrogen storage
Mixed integer linear programming
Multi-objective optimization
Photovoltaic system
Title A multi-objective optimization model based on mixed integer linear programming for sizing a hybrid PV-hydrogen storage system
URI https://dx.doi.org/10.1016/j.ijhydene.2022.12.060
Volume 48
WOSCitedRecordID wos000949954200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-3487
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017049
  issn: 0360-3199
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcEE_xlg_cIldN4sTJsUILC4LVSiyot8iObbXVNkXdsHSR-Kf8GMYZJ-td7QGEuERtHKfuzCfPeDzfmJBXPE3s1OYJU5kWjEtpmAQrwoyt6zzXXBaqIwp_EIeHxXxeHo1Gv3ouzNmJaJpityu__ldVwz1QtqPO_oW6h5fCDfgMSocrqB2uf6T4GSYJso1a4WQWbWBaWHu-JR59Eznjpd1GwXq5MxqLRpht5HxOV_sak7bWfZbl6fJHx2WMFueO4BUdfWGLcw0PmSZy2ZUu7wdLQoe-7uVgY1CiYuhrOuLhoPPNwoXRMdD9PUgWeruQSxfh7xoW8ET0cTIA9YQdyEZJZHlDq9RDU9tiJvClPj7CkaQuxQtp9Bh266k3F3lOSPdyBgRPV5oYnL0LUbKUewvup3deBDBOwskallJFYPjBMYuvNSoY31hNliuQD0hmAoNMuiAyHoVwpWD3Jzc0NzLHYRZClDfIXiKyshiTvdm7_fn7YZdL-OVZ_1cCBvv1vxZ4TIEXdHyX3PHLFzpD2N0jI9PcJ7eDopYPyM8ZvQJAGgKQdgCkHQCp--oASD0AKQKQBgCkAECKAKSSIgBpAEDqAUgRgA_J5zf7x68PmD_kgxnwmlomlCuqaHVS1FNbpnkslbVaZnmdqkxyYzmXtcpF7fYHVW1SrqzOpM2NgMV4WqaPyLjZNOYxoTata60TruJ8Cp10kSkhcxsrBV4a5-oJKXvpVd6_RL-xAk1XfbrjquolXznJV3FSgeSf_kPfZ-TWBayfk3G7_WZekJv1Wbs83b70oPgNurCsfA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-objective+optimization+model+based+on+mixed+integer+linear+programming+for+sizing+a+hybrid+PV-hydrogen+storage+system&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Mohammed%2C+Awsan&rft.au=Ghaithan%2C+Ahmed+M.&rft.au=Al-Hanbali%2C+Ahmad&rft.au=Attia%2C+Ahmed+M.&rft.date=2023-03-26&rft.pub=Elsevier+Ltd&rft.issn=0360-3199&rft.eissn=1879-3487&rft.volume=48&rft.issue=26&rft.spage=9748&rft.epage=9761&rft_id=info:doi/10.1016%2Fj.ijhydene.2022.12.060&rft.externalDocID=S0360319922057779
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon