Training Compact DNNs with ℓ1/2 Regularization
•We propose a network compression model based on ℓ1/2 regularization. To the best of our knowledge, it is the first work utilizing non-Lipschitz continuous regularization to compress DNNs.•We strictly prove the correspondence between ℓp(0<p<1) and Hyper-Laplacian prior. Based on this prior, we...
Uloženo v:
| Vydáno v: | Pattern recognition Ročník 136 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.04.2023
|
| Témata: | |
| ISSN: | 0031-3203, 1873-5142 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!