Training Compact DNNs with ℓ1/2 Regularization

•We propose a network compression model based on ℓ1/2 regularization. To the best of our knowledge, it is the first work utilizing non-Lipschitz continuous regularization to compress DNNs.•We strictly prove the correspondence between ℓp(0<p<1) and Hyper-Laplacian prior. Based on this prior, we...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Pattern recognition Ročník 136
Hlavní autoři: Tang, Anda, Niu, Lingfeng, Miao, Jianyu, Zhang, Peng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.04.2023
Témata:
ISSN:0031-3203, 1873-5142
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •We propose a network compression model based on ℓ1/2 regularization. To the best of our knowledge, it is the first work utilizing non-Lipschitz continuous regularization to compress DNNs.•We strictly prove the correspondence between ℓp(0<p<1) and Hyper-Laplacian prior. Based on this prior, we suggest utilizing ℓ1/2, as the single regularizer, to sparsify the connections and neurons of the network simultaneously.•We give a closed-form, threshold solution to the proximal operator of ℓ1/2, and consequently design a stochastic proximal gradient algorithm to train the resulting model.•We conduct experiments to validate the performance of the proposed method. The results demonstrate that our method outperforms benchmark methods in terms of accuracy, computation and memory costs. Deep neural network(DNN) has achieved unprecedented success in many fields. However, its large model parameters which bring a great burden on storage and calculation hinder the development and application of DNNs. It is worthy of compressing the model to reduce the complexity of the DNN. Sparsity-inducing regularizer is one of the most common tools for compression. In this paper, we propose utilizing the ℓ1/2 quasi-norm to zero out weights of neural networks and compressing the networks automatically during the learning process. To our knowledge, it is the first work applying the non-Lipschitz continuous regularizer for the compression of DNNs. The resulting sparse optimization problem is solved by stochastic proximal gradient algorithm. For further convenience of calculation, an approximation of the threshold-form solution to the proximal operator with ℓ1/2 is given at the same time. Extensive experiments with various datasets and baselines demonstrate the advantages of our new method.
AbstractList •We propose a network compression model based on ℓ1/2 regularization. To the best of our knowledge, it is the first work utilizing non-Lipschitz continuous regularization to compress DNNs.•We strictly prove the correspondence between ℓp(0<p<1) and Hyper-Laplacian prior. Based on this prior, we suggest utilizing ℓ1/2, as the single regularizer, to sparsify the connections and neurons of the network simultaneously.•We give a closed-form, threshold solution to the proximal operator of ℓ1/2, and consequently design a stochastic proximal gradient algorithm to train the resulting model.•We conduct experiments to validate the performance of the proposed method. The results demonstrate that our method outperforms benchmark methods in terms of accuracy, computation and memory costs. Deep neural network(DNN) has achieved unprecedented success in many fields. However, its large model parameters which bring a great burden on storage and calculation hinder the development and application of DNNs. It is worthy of compressing the model to reduce the complexity of the DNN. Sparsity-inducing regularizer is one of the most common tools for compression. In this paper, we propose utilizing the ℓ1/2 quasi-norm to zero out weights of neural networks and compressing the networks automatically during the learning process. To our knowledge, it is the first work applying the non-Lipschitz continuous regularizer for the compression of DNNs. The resulting sparse optimization problem is solved by stochastic proximal gradient algorithm. For further convenience of calculation, an approximation of the threshold-form solution to the proximal operator with ℓ1/2 is given at the same time. Extensive experiments with various datasets and baselines demonstrate the advantages of our new method.
ArticleNumber 109206
Author Zhang, Peng
Tang, Anda
Miao, Jianyu
Niu, Lingfeng
Author_xml – sequence: 1
  givenname: Anda
  surname: Tang
  fullname: Tang, Anda
  email: tanganda17@mails.ucas.ac.cn
  organization: School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
– sequence: 2
  givenname: Lingfeng
  surname: Niu
  fullname: Niu, Lingfeng
  email: niulf@ucas.ac.cn
  organization: Research Center on Fictitious Economy and Data Science, Chinese Academy of Sciences, Beijing,100190 China
– sequence: 3
  givenname: Jianyu
  surname: Miao
  fullname: Miao, Jianyu
  email: jymiao@haut.edu.cn
  organization: School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou, 450001, China
– sequence: 4
  givenname: Peng
  surname: Zhang
  fullname: Zhang, Peng
  email: p.zhang@gzhu.edu.cn
  organization: Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, 511442, China
BookMark eNotz91Kw0AQBeBFKphW38CLvEDSmdn8rDeCRK1CqSD1etlsZuOGmpQkKnjtG_iGPokt8WrgDJzDNxeztmtZiEuEGAGzZRPvzWi7OiYgOkRXBNmJCFDlMkoxoZkIACRGkkCeifkwNACYHx6BgG1vfOvbOiy6t72xY3i72Qzhpx9fw9_vH1xS-Mz1-870_suMvmvPxakzu4Ev_u9CvNzfbYuHaP20eixu1hETwhhViWWTJlUGhi2AxYqSTCquFLFDyiyW0ihwTiVWpZA6R6nJgRWVZcbWyYW4nnr5MPLhudeD9dxarnzPdtRV5zWCPvp1oye_Pvr15Jd_4dNS-w
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DOI 10.1016/j.patcog.2022.109206
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID S0031320322006859
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
ID FETCH-LOGICAL-e210t-d4cea54d60aec00c1d24638ed82ef126c1b3a80ff84c8505ff25a70e82bb6ecf3
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000900874600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Fri Feb 23 02:39:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Sparse optimization
Deep neural networks
Model compression
Non-Lipschitz regularization
ℓ1/2 Quasi-norm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-e210t-d4cea54d60aec00c1d24638ed82ef126c1b3a80ff84c8505ff25a70e82bb6ecf3
ParticipantIDs elsevier_sciencedirect_doi_10_1016_j_patcog_2022_109206
PublicationCentury 2000
PublicationDate April 2023
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yoon, Hwang (bib0004) 2017
Hassibi, Stork (bib0011) 1993
Ma, Miao, Niu, Zhang (bib0023) 2019; 119
Fan, Li (bib0040) 2001; 96
Xu, Zhang, Wang, Chang, Liang (bib0024) 2010; 53
Xue, Xin (bib0042) 2019
Han (bib0007) 2015
Aghasi, Abdi, Nguyen, Romberg (bib0018) 2017
Diederik P. Kingma (bib0034) 2015
Krishnan, Fergus (bib0028) 2009
Glorot, Bordes, Bengio (bib0039) 2011
Wu, Leng, Wang, Hu, Cheng (bib0016) 2016
Christos Louizos (bib0008) 2017
Bengio, Roux, Vincent, Delalleau, Marcotte (bib0036) 2006
Chartrand, Staneva (bib0025) 2008; 24
Li, Grandvalet, Davoine (bib0038) 2019; 98
Tang, Ma, Miao, Niu (bib0043) 2019
Chartrand, Yin (bib0033) 2008
Chen, Ng, Zhang (bib0029) 2012; 21
Molchanov, Vetrov (bib0014) 2017
Denil, Shakibi, Dinh, Ranzato, De Freitas (bib0006) 2013
Xu, Guo, Wang, ZHANG (bib0030) 2012; 38
Niu, Zhou, Tian, Qi, Zhang (bib0027) 2016; 47
Shi, Miao, Wang, Zhang, Niu (bib0046) 2018; 29
Zeng, Lin, Wang, Xu (bib0047) 2014; 62
Xu, Chang, Xu, Zhang (bib0031) 2012; 23
Tibshirani (bib0048) 1996; 58
Dauphin, Fan, Auli, Grangier (bib0003) 2017
Yin, Lou, He, Xin (bib0045) 2015; 37
Hanson, Pratt (bib0009) 1989
Gupta, Agrawal, Gopalakrishnan, Narayanan (bib0015) 2015
Geoffrey, Li, Dong, George, Mohamed (bib0001) 2012; 29
Chartrand (bib0049) 2009
Zhou, Alvarez, Porikli (bib0019) 2016
Yu, Rui, Tao (bib0022) 2014; 23
Alvarez, Salzmann (bib0005) 2016
Lebedev, Lempitsky (bib0020) 2016
Krizhevsky, Sutskever, Hinton (bib0002) 2012
Cheng, Wang, Zhou, Zhang (bib0017) 2018; 35
Zhang, Xin (bib0041) 2017; 15
LeCun, Denker, Solla (bib0010) 1990
Gu, Wang, Kuen, Ma, Shahroudy, Shuai, Liu, Wang, Wang, Cai (bib0037) 2018; 77
Wen, Wu, Wang, Chen, Li (bib0021) 2016
Aslan, Zhang, Schuurmans (bib0035) 2014
Zhang (bib0044) 2010; 38
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib0012) 2014; 15
Poernomo, Kang (bib0013) 2018; 104
Xu (bib0032) 2010
Cao, Cai, Tan, Zhao (bib0026) 2016; 27
References_xml – volume: 37
  start-page: A536
  year: 2015
  end-page: A563
  ident: bib0045
  article-title: Minimization of
  publication-title: SIAM Journal on Scientific Computing
– start-page: 3151
  year: 2010
  end-page: 3184
  ident: bib0032
  article-title: Data modeling: Visual psychology approach and
  publication-title: Proceedings of the International Congress of Mathematicians 2010 (ICM 2010) (In 4 Volumes) Vol. I: Plenary Lectures and Ceremonies Vols. II–IV: Invited Lectures
– year: 2015
  ident: bib0034
  article-title: Variational dropout and the local reparameterization trick
  publication-title: Advances in Neural Information Processing Systems
– volume: 27
  start-page: 1550
  year: 2016
  end-page: 1561
  ident: bib0026
  article-title: Image super-resolution via adaptive
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 38
  start-page: 1225
  year: 2012
  end-page: 1228
  ident: bib0030
  article-title: Representative of
  publication-title: Acta Automatica Sinica
– volume: 62
  start-page: 2317
  year: 2014
  end-page: 2329
  ident: bib0047
  article-title: regularization: Convergence of iterative half thresholding algorithm
  publication-title: IEEE Transactions on Signal Processing
– volume: 35
  start-page: 126
  year: 2018
  end-page: 136
  ident: bib0017
  article-title: Model compression and acceleration for deep neural networks: The principles, progress, and challenges
  publication-title: IEEE Signal Processing Magazine
– volume: 47
  start-page: 1423
  year: 2016
  end-page: 1433
  ident: bib0027
  article-title: Nonsmooth penalized clustering via
  publication-title: IEEE Transactions on Cybernetics
– start-page: 3958
  year: 2017
  end-page: 3966
  ident: bib0004
  article-title: Combined group and exclusive sparsity for deep neural networks
  publication-title: Proceedings of the 34th International Conference on Machine Learning-Volume 70
– volume: 98
  start-page: 107049
  year: 2019
  ident: bib0038
  article-title: A baseline regularization scheme for transfer learning with convolutional neural networks
  publication-title: Pattern Recognition
– start-page: 1135
  year: 2015
  end-page: 1143
  ident: bib0007
  article-title: Learning both weights and connections for efficient neural network
  publication-title: Advances in Neural Information Processing Systems
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: bib0012
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: The Journal of Machine Learning Research
– volume: 29
  start-page: 4967
  year: 2018
  end-page: 4982
  ident: bib0046
  article-title: Feature selection with
  publication-title: IEEE transactions on neural networks and learning systems
– volume: 53
  start-page: 1159
  year: 2010
  end-page: 1169
  ident: bib0024
  article-title: regularization
  publication-title: Science China Information Sciences
– start-page: 158
  year: 2019
  end-page: 166
  ident: bib0043
  article-title: Sparse optimization based on non-convex
  publication-title: International Conference on Data Science
– start-page: 123
  year: 2006
  end-page: 130
  ident: bib0036
  article-title: Convex neural networks
  publication-title: Advances in Neural Information Processing Systems
– start-page: 164
  year: 1993
  end-page: 171
  ident: bib0011
  article-title: Second order derivatives for network pruning: Optimal brain surgeon
  publication-title: Advances in Neural Information Processing Systems
– volume: 15
  start-page: 511
  year: 2017
  end-page: 537
  ident: bib0041
  article-title: Minimization of transformed
  publication-title: Communications in Mathematical Sciences
– volume: 29
  start-page: 82
  year: 2012
  end-page: 97
  ident: bib0001
  article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
  publication-title: IEEE Signal Processing Magazine
– volume: 24
  start-page: 035020
  year: 2008
  ident: bib0025
  article-title: Restricted isometry properties and nonconvex compressive sensing
  publication-title: Inverse Problems
– year: 2017
  ident: bib0014
  article-title: Variational dropout sparsifies deep neural networks
  publication-title: ICML
– start-page: 3275
  year: 2014
  end-page: 3283
  ident: bib0035
  article-title: Convex deep learning via normalized kernels
  publication-title: Advances in Neural Information Processing Systems
– start-page: 1737
  year: 2015
  end-page: 1746
  ident: bib0015
  article-title: Deep learning with limited numerical precision
  publication-title: International Conference on Machine Learning
– volume: 77
  start-page: 354
  year: 2018
  end-page: 377
  ident: bib0037
  article-title: Recent advances in convolutional neural networks
  publication-title: Pattern Recognition
– start-page: 262
  year: 2009
  end-page: 265
  ident: bib0049
  article-title: Fast algorithms for nonconvex compressive sensing: Mri reconstruction from very few data
  publication-title: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro
– start-page: 2554
  year: 2016
  end-page: 2564
  ident: bib0020
  article-title: Fast convnets using group-wise brain damage
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 104
  start-page: 60
  year: 2018
  end-page: 67
  ident: bib0013
  article-title: Biased dropout and crossmap dropout: learning towards effective dropout regularization in convolutional neural network
  publication-title: Neural Networks
– start-page: 3177
  year: 2017
  end-page: 3186
  ident: bib0018
  article-title: Net-trim: Convex pruning of deep neural networks with performance guarantee
  publication-title: Advances in Neural Information Processing Systems
– volume: 23
  start-page: 2019
  year: 2014
  end-page: 2032
  ident: bib0022
  article-title: Click prediction for web image reranking using multimodal sparse coding
  publication-title: IEEE Transactions on Image Processing
– start-page: 3869
  year: 2008
  end-page: 3872
  ident: bib0033
  article-title: Iteratively reweighted algorithms for compressive sensing
  publication-title: 2008 IEEE International Conference on Acoustics, Speech and Signal Processing
– start-page: 598
  year: 1990
  end-page: 605
  ident: bib0010
  article-title: Optimal brain damage
  publication-title: Advances in Neural Information Processing Systems
– start-page: 800
  year: 2019
  end-page: 809
  ident: bib0042
  article-title: Learning sparse neural networks via
  publication-title: World Congress on Global Optimization
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: bib0048
  article-title: Regression shrinkage and selection via the lasso
  publication-title: Journal of the Royal Statistical Society: Series B (Methodological)
– start-page: 2148
  year: 2013
  end-page: 2156
  ident: bib0006
  article-title: Predicting parameters in deep learning
  publication-title: Advances in Neural Information Processing Systems
– start-page: 177
  year: 1989
  end-page: 185
  ident: bib0009
  article-title: Comparing biases for minimal network construction with back-propagation
  publication-title: Advances in Neural Information Processing Systems
– volume: 23
  start-page: 1013
  year: 2012
  end-page: 1027
  ident: bib0031
  article-title: regularization: A thresholding representation theory and a fast solver
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– start-page: 3288
  year: 2017
  end-page: 3298
  ident: bib0008
  article-title: Bayesian compression for deep learning
  publication-title: Advances in Neural Information Processing Systems
– volume: 119
  start-page: 286
  year: 2019
  end-page: 298
  ident: bib0023
  article-title: Transformed
  publication-title: Neural Networks
– start-page: 315
  year: 2011
  end-page: 323
  ident: bib0039
  article-title: Deep sparse rectifier neural networks
  publication-title: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics
– volume: 96
  start-page: 1348
  year: 2001
  end-page: 1360
  ident: bib0040
  article-title: Variable selection via nonconcave penalized likelihood and its oracle properties
  publication-title: Journal of the American statistical Association
– start-page: 933
  year: 2017
  end-page: 941
  ident: bib0003
  article-title: Language modeling with gated convolutional networks
  publication-title: Proceedings of the 34th International Conference on Machine Learning-Volume 70
– start-page: 2074
  year: 2016
  end-page: 2082
  ident: bib0021
  article-title: Learning structured sparsity in deep neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 38
  start-page: 894
  year: 2010
  end-page: 942
  ident: bib0044
  article-title: Nearly unbiased variable selection under minimax concave penalty
  publication-title: The Annals of statistics
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib0002
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– start-page: 4820
  year: 2016
  end-page: 4828
  ident: bib0016
  article-title: Quantized convolutional neural networks for mobile devices
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 21
  start-page: 4709
  year: 2012
  end-page: 4721
  ident: bib0029
  article-title: Non-lipschitz
  publication-title: IEEE Transactions on Image Processing
– start-page: 1033
  year: 2009
  end-page: 1041
  ident: bib0028
  article-title: Fast image deconvolution using hyper-laplacian priors
  publication-title: Advances in Neural Information Processing Systems
– start-page: 2270
  year: 2016
  end-page: 2278
  ident: bib0005
  article-title: Learning the number of neurons in deep networks
  publication-title: Advances in Neural Information Processing Systems
– start-page: 662
  year: 2016
  end-page: 677
  ident: bib0019
  article-title: Less is more: Towards compact cnns
  publication-title: European Conference on Computer Vision
SSID ssj0017142
Score 2.4627278
Snippet •We propose a network compression model based on ℓ1/2 regularization. To the best of our knowledge, it is the first work utilizing non-Lipschitz continuous...
SourceID elsevier
SourceType Publisher
SubjectTerms [formula omitted] Quasi-norm
Deep neural networks
Model compression
Non-Lipschitz regularization
Sparse optimization
Title Training Compact DNNs with ℓ1/2 Regularization
URI https://dx.doi.org/10.1016/j.patcog.2022.109206
Volume 136
WOSCitedRecordID wos000900874600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwELXo0kMvpfRDQD-UAz1Vbm3Hjp3jilIVDtFKbKW9RYkzRnAIaNlF9M4_4B_ySzqxHTZ0L22lXqIoSnYTv2T8ZjxvhpB9qJWoaq0o6IpRyZ2gFc4SlGfQKCRzGmrrm03oojCzWT6JXTqvfDsB3bbm5ia__K9Q4zEEu5PO_gXcDz-KB3AfQcctwo7bPwM-Nn0In7pdfPpaFFHD5jMb5Mc89QoNHNquD_08KjGHNHXiq252SpeYXrRarJ_GAPN44MsXZ8vo3586iFOh1xlWYV0HX8Gfy7UQ9aQ_NQYdRDrIVfGRsF4Ns0o98tY15TQVLBgsCAbV6JQiKXtscUPNkzXrHQIJ558vcRa6OEXnXYiu3JVgvxXL9tPvSSg7ydAidToXlT8hm0Kr3IzI5vjocHb8sJikuQxF4-Pt9QpKn-a3_l8DWjKgGtMX5Hn0EZJxwHabbED7kmz1_TeSaI5fEdZDnUSokw7qpIM6ub-9419E8hji1-THt8PpwXcaO2BQQFd8QRtpoVKyyVgFljHLGyHRYEJjBDguMsvrtDLMOSOtQS7rnFCVZmBEXWdgXfqGjNqLFnZIohuFhAXd_ZpZycHVjcqstU4YK0E7u0t0_9RlJF-BVJWITtnnAp6XYbzKbrzKMF57_3zlW_Js9XK9I6PFfAnvyVN7vTi7mn-IMP4Ch8FSxQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Training+Compact+DNNs+with+%E2%84%931%2F2+Regularization&rft.jtitle=Pattern+recognition&rft.au=Tang%2C+Anda&rft.au=Niu%2C+Lingfeng&rft.au=Miao%2C+Jianyu&rft.au=Zhang%2C+Peng&rft.date=2023-04-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=136&rft_id=info:doi/10.1016%2Fj.patcog.2022.109206&rft.externalDocID=S0031320322006859
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon