Graph embedding techniques, applications, and performance: A survey

Graphs, such as social networks, word co-occurrence networks, and communication networks, occur naturally in various real-world applications. Analyzing them yields insight into the structure of society, language, and different patterns of communication. Many approaches have been proposed to perform...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems Jg. 151; S. 78 - 94
Hauptverfasser: Goyal, Palash, Ferrara, Emilio
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.07.2018
Schlagworte:
ISSN:0950-7051, 1872-7409
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Graphs, such as social networks, word co-occurrence networks, and communication networks, occur naturally in various real-world applications. Analyzing them yields insight into the structure of society, language, and different patterns of communication. Many approaches have been proposed to perform the analysis. Recently, methods which use the representation of graph nodes in vector space have gained traction from the research community. In this survey, we provide a comprehensive and structured analysis of various graph embedding techniques proposed in the literature. We first introduce the embedding task and its challenges such as scalability, choice of dimensionality, and features to be preserved, and their possible solutions. We then present three categories of approaches based on factorization methods, random walks, and deep learning, with examples of representative algorithms in each category and analysis of their performance on various tasks. We evaluate these state-of-the-art methods on a few common datasets and compare their performance against one another. Our analysis concludes by suggesting some potential applications and future directions. We finally present the open-source Python library we developed, named GEM (Graph Embedding Methods, available at https://github.com/palash1992/GEM), which provides all presented algorithms within a unified interface to foster and facilitate research on the topic.
AbstractList Graphs, such as social networks, word co-occurrence networks, and communication networks, occur naturally in various real-world applications. Analyzing them yields insight into the structure of society, language, and different patterns of communication. Many approaches have been proposed to perform the analysis. Recently, methods which use the representation of graph nodes in vector space have gained traction from the research community. In this survey, we provide a comprehensive and structured analysis of various graph embedding techniques proposed in the literature. We first introduce the embedding task and its challenges such as scalability, choice of dimensionality, and features to be preserved, and their possible solutions. We then present three categories of approaches based on factorization methods, random walks, and deep learning, with examples of representative algorithms in each category and analysis of their performance on various tasks. We evaluate these state-of-the-art methods on a few common datasets and compare their performance against one another. Our analysis concludes by suggesting some potential applications and future directions. We finally present the open-source Python library we developed, named GEM (Graph Embedding Methods, available at https://github.com/palash1992/GEM), which provides all presented algorithms within a unified interface to foster and facilitate research on the topic.
Author Goyal, Palash
Ferrara, Emilio
Author_xml – sequence: 1
  givenname: Palash
  orcidid: 0000-0003-2455-2160
  surname: Goyal
  fullname: Goyal, Palash
  email: palashgo@usc.edu
– sequence: 2
  givenname: Emilio
  surname: Ferrara
  fullname: Ferrara, Emilio
BookMark eNotkFFLwzAUhYNMsJv-Ax_6A2y9Sdom9UEYRacw8EWfQ9rcuNQtrU032L-3ZT4dDhzOufdbkoXvPBJyTyGlQIvHNv3xXTiHlAGVKfAUGLsiEZWCJSKDckEiKHNIBOT0hixDaAGmCJURqTaD7ncxHmo0xvnveMRm593vEcNDrPt-7xo9us7Pzpu4x8F2w0H7Bp_idRyOwwnPt-Ta6n3Au39dka_Xl8_qLdl-bN6r9TZBRmFMDOUcZJ1ltraMcc2EhdxKWjeWI5RWUFEwyIWuWWZyyzgasMhLaTIpjCn4ijxfenEaOTkcVGgcTqcYN2AzKtM5RUHNSFSrLkjUjEQBV9O__A8tO1mg
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DOI 10.1016/j.knosys.2018.03.022
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
EndPage 94
ExternalDocumentID S0950705118301540
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
ID FETCH-LOGICAL-e210t-d13308b44fbf223a27f05f81bcf3e09f71762057ab24d5f23ed0fe398d487dd63
ISICitedReferencesCount 1227
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000433655600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Fri Feb 23 02:29:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Python graph embedding methods GEM library
Graph embedding applications
Graph embedding techniques
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-e210t-d13308b44fbf223a27f05f81bcf3e09f71762057ab24d5f23ed0fe398d487dd63
ORCID 0000-0003-2455-2160
PageCount 17
ParticipantIDs elsevier_sciencedirect_doi_10_1016_j_knosys_2018_03_022
PublicationCentury 2000
PublicationDate 2018-07-01
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Knowledge-based systems
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zachary (bib0091) 1977; 33
W.L. Hamilton, R. Ying, J. Leskovec, Inductive representation learning on large graphs, arXiv
Rissanen (bib0073) 1978; 14
J. Leskovec, A. Krevl, SNAP datasets: Stanford large network dataset collection, 2014
Tang, Liu (bib0093) 2009
Wang, Wong (bib0090) 1987; 82
T.N. Kipf, M. Welling, Variational graph auto-encoders, arXiv
Friedman, Getoor, Koller, Pfeffer (bib0017) 1999
Lin, Liu, Chen (bib0043) 2005
White, Boorman, Breiger (bib0016) 1976; 81
Zhang, Yin, Zhu, Zhang (bib0047) 2016
Jaccard (bib0013) 1901
Neville, Jensen (bib0087) 2000
Fouss, Pirotte, Renders, Saerens (bib0050) 2007; 19
Van Loan (bib0034) 1976; 13
McCallum, Nigam (bib0089) 1998; 752
Tenenbaum, De Silva, Langford (bib0038) 2000; 290
Freeman (bib0002) 2000; 1
Azran (bib0009) 2007
Huang, Li, Hu (bib0048) 2017
(2013).
Martínez, Kak (bib0037) 2001; 23
Gehrke, Ginsparg, Kleinberg (bib0094) 2003; 5
.
Lu, Getoor (bib0012) 2003; 3
(2017).
Kruskal, Wish (bib0039) 1978; 11
Pan, Wu, Zhu, Zhang, Wang (bib0055) 2016; 11
Bhagat, Cormode, Muthukrishnan (bib0006) 2011
Duvenaud, Maclaurin, Iparraguirre, Bombarell, Hirzel, Aspuru-Guzik, Adams (bib0061) 2015
Wang, Cui, Zhu (bib0023) 2016
H. Dai, Y. Wang, R. Trivedi, L. Song, Deep coevolutionary network: embedding user and item features for recommendation (2017).
Ou, Cui, Pei, Zhang, Zhu (bib0024) 2016
Di Battista, Eades, Tamassia, Tollis (bib0076) 1994; 4
Leskovec, Kleinberg, Faloutsos (bib0004) 2007; 1
Belkin, Niyogi (bib0025) 2001; 14
Hornik, Stinchcombe, White (bib0067) 1990; 3
W.L. Hamilton, R. Ying, J. Leskovec, Representation learning on graphs: methods and applications, arXiv preprint arXiv
Li, Zhu, Zhang (bib0054) 2016
i Cancho, Solé (bib0003) 2001; 268
Martínez, Kak (bib0042) 2008; 23
Wright, Ma, Mairal, Sapiro, Huang, Yan (bib0102) 2010; 98
Clauset, Moore, Newman (bib0015) 2008; 453
Niepert, Ahmed, Kutzkov (bib0057) 2016
Herman, Melançon, Marshall (bib0078) 2000; 6
(2016).
Feder, Motwani (bib0068) 1991
Bengio, Courville, Vincent (bib0058) 2013; 35
Tang, Qu, Wang, Zhang, Yan, Mei (bib0022) 2015
Chang, Han, Tang, Qi, Aggarwal, Huang (bib0045) 2015
He, Niyogi (bib0040) 2004
Bunke, Riesen (bib0103) 2011; 44
Tian, Hankins, Patel (bib0070) 2008
Yang, Tang, Cohen (bib0053) 2016
Katz (bib0085) 1953; 18
Hosmer Jr, Lemeshow, Sturdivant (bib0088) 2013; 398
Eades, Xuemin (bib0077) 1989
J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral networks and locally connected networks on graphs, arXiv
Riesen, Neuhaus, Bunke (bib0101) 2007
Maaten, Hinton (bib0008) 2008; 9
T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, arXiv
B. Perozzi, V. Kulkarni, S. Skiena, Walklets: multiscale graph embeddings for interpretable network classification, arXiv
Shaw, Jebara (bib0033) 2009
Z. Yang, W.W. Cohen, R. Salakhutdinov, Revisiting semi-supervised learning with graph embeddings, arXiv
H. Chen, B. Perozzi, Y. Hu, S. Skiena, Harp: hierarchical representation learning for networks, arXiv
Defferrard, Bresson, Vandergheynst (bib0063) 2016
M. Henaff, J. Bruna, Y. LeCun, Deep convolutional networks on graph-structured data, arXiv
Navlakha, Rastogi, Shrivastava (bib0072) 2008
(2015).
Shi, Malik (bib0020) 2000; 22
Liben-Nowell, Kleinberg (bib0005) 2007; 58
Cao, Lu, Xu (bib0030) 2016
Yu, Chu, Yu, Tresp, Xu (bib0086) 2006
Brand (bib0041) 2003
Jungnickel, Schade (bib0074) 2005
P. Goyal, N. Kamra, X. He, Y. Liu, Dyngem: deep embedding method for dynamic graphs.
Zhu, Guo, Yin, Ver Steeg, Galstyan (bib0099) 2016; 28
Baluja, Seth, Sivakumar, Jing, Yagnik, Kumar, Ravichandran, Aly (bib0010) 2008
Al Hasan, Zaki (bib0084) 2011
Yan, Xu, Zhang, Zhang, Yang, Lin (bib0035) 2007; 29
Roweis, Saul (bib0026) 2000; 290
Yang, Liu, Zhao, Sun, Chang (bib0044) 2015
Lü, Zhou (bib0083) 2011; 390
Tang, Liu (bib0092) 2009
Newman (bib0049) 2005; 27
Perozzi, Al-Rfou, Skiena (bib0028) 2014
Ding, He, Zha, Gu, Simon (bib0007) 2001
Heckerman, Meek, Koller (bib0018) 2007
Toivonen, Zhou, Hartikainen, Hinkka (bib0071) 2011
Pearson (bib0079) 1901; 2
H. Cai, V.W. Zheng, K.C.-C. Chang, A comprehensive survey of graph embedding: problems, techniques and applications, arXiv preprint arXiv
Tu, Zhang, Liu, Sun (bib0046) 2016
Theocharidis, Van Dongen, Enright, Freeman (bib0001) 2009; 4
Breitkreutz, Stark, Reguly, Boucher, Breitkreutz, Livstone, Oughtred, Lackner, Bähler, Wood (bib0096) 2008; 36
Zhou, Cheng, Yu (bib0019) 2009; 2
Jolliffe (bib0036) 1986
Adamic, Adar (bib0014) 2003; 25
Luo, Nie, Huang, Ding (bib0032) 2011
Grover, Leskovec (bib0029) 2016
Newman, Girvan (bib0080) 2004; 69
White, Smyth (bib0082) 2005
Y. Li, D. Tarlow, M. Brockschmidt, R. Zemel, Gated graph sequence neural networks, arXiv
Xu, Yuruk, Feng, Schweiger (bib0081) 2007
Pardalos, Xue (bib0069) 1994; 4
Holland, Laskey, Leinhardt (bib0100) 1983; 5
Ahmed, Shervashidze, Narayanamurthy, Josifovski, Smola (bib0021) 2013
D.P. Kingma, M. Welling, Auto-encoding variational bayes, arXiv
Gansner, North (bib0075) 2000; 30
Cao, Lu, Xu (bib0027) 2015
Bhagat, Rozenbaum, Cormode (bib0011) 2007
References_xml – reference: H. Cai, V.W. Zheng, K.C.-C. Chang, A comprehensive survey of graph embedding: problems, techniques and applications, arXiv preprint arXiv:
– start-page: 201
  year: 2007
  end-page: 238
  ident: bib0018
  article-title: Probabilistic entity-relationship models, prms, and plate models
  publication-title: Intro. Stat. Relational Learn.
– start-page: 1225
  year: 2016
  end-page: 1234
  ident: bib0023
  article-title: Structural deep network embedding
  publication-title: Proceedings of the 22nd International Conference on Knowledge Discovery and Data Mining
– reference: ).
– start-page: 547
  year: 2003
  end-page: 554
  ident: bib0041
  article-title: Continuous nonlinear dimensionality reduction by kernel eigenmaps
  publication-title: IJCAI
– start-page: 383
  year: 2007
  end-page: 393
  ident: bib0101
  article-title: Graph embedding in vector spaces by means of prototype selection
  publication-title: International Workshop on Graph-Based Representations in Pattern Recognition
– start-page: 1300
  year: 1999
  end-page: 1309
  ident: bib0017
  article-title: Learning probabilistic relational models
  publication-title: IJCAI
– volume: 25
  start-page: 211
  year: 2003
  end-page: 230
  ident: bib0014
  article-title: Friends and neighbors on the web
  publication-title: Soc. Netw.
– start-page: 2224
  year: 2015
  end-page: 2232
  ident: bib0061
  article-title: Convolutional networks on graphs for learning molecular fingerprints
  publication-title: Advances in neural information processing systems
– start-page: 817
  year: 2009
  end-page: 826
  ident: bib0092
  article-title: Relational learning via latent social dimensions
  publication-title: Proceedings of the 15th international conference on Knowledge discovery and data mining
– start-page: 1553
  year: 2006
  end-page: 1560
  ident: bib0086
  article-title: Stochastic relational models for discriminative link prediction
  publication-title: NIPS
– start-page: 37
  year: 2013
  end-page: 48
  ident: bib0021
  article-title: Distributed large-scale natural graph factorization
  publication-title: Proceedings of the 22nd international conference on World Wide Web
– start-page: 965
  year: 2011
  end-page: 973
  ident: bib0071
  article-title: Compression of weighted graphs
  publication-title: Proc. 17th international conference on Knowledge discovery and data mining
– volume: 58
  start-page: 1019
  year: 2007
  end-page: 1031
  ident: bib0005
  article-title: The link-prediction problem for social networks
  publication-title: J. Assoc. Inf. Sci. Technol.
– reference: T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, arXiv:
– volume: 398
  year: 2013
  ident: bib0088
  article-title: Applied logistic regression
– volume: 2
  start-page: 559
  year: 1901
  end-page: 572
  ident: bib0079
  article-title: Liii. on lines and planes of closest fit to systems of points in space
  publication-title: Lond., Edinburgh, Dublin Philos. Mag. J. Sci.
– start-page: 249
  year: 2005
  end-page: 258
  ident: bib0043
  article-title: Semantic manifold learning for image retrieval
  publication-title: Proceedings of the 13th annual ACM international conference on Multimedia
– start-page: 895
  year: 2008
  end-page: 904
  ident: bib0010
  article-title: Video suggestion and discovery for youtube: taking random walks through the view graph
  publication-title: Proc. 17th int. conference on World Wide Web
– year: 2016
  ident: bib0057
  article-title: Learning convolutional neural networks for graphs
  publication-title: Proceedings of the 33rd annual international conference on machine learning. ACM
– volume: 5
  start-page: 109
  year: 1983
  end-page: 137
  ident: bib0100
  article-title: Stochastic blockmodels: first steps
  publication-title: Soc. Netw.
– volume: 3
  start-page: 496
  year: 2003
  end-page: 503
  ident: bib0012
  article-title: Link-based classification
  publication-title: ICML
– reference: (2017).
– volume: 2
  start-page: 718
  year: 2009
  end-page: 729
  ident: bib0019
  article-title: Graph clustering based on structural/attribute similarities
  publication-title: Proc. VLDB Endow.
– start-page: 274
  year: 2005
  end-page: 285
  ident: bib0082
  article-title: A spectral clustering approach to finding communities in graphs
  publication-title: Proceedings of the 2005 SIAM international conference on data mining
– volume: 290
  start-page: 2323
  year: 2000
  end-page: 2326
  ident: bib0026
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
– reference: Y. Li, D. Tarlow, M. Brockschmidt, R. Zemel, Gated graph sequence neural networks, arXiv:
– year: 1901
  ident: bib0013
  article-title: Etude comparative de la distribution florale dans une portion des Alpes et du Jura
– reference: H. Dai, Y. Wang, R. Trivedi, L. Song, Deep coevolutionary network: embedding user and item features for recommendation (2017).
– reference: (2017).
– start-page: 855
  year: 2016
  end-page: 864
  ident: bib0029
  article-title: node2vec: scalable feature learning for networks
  publication-title: Proceedings of the 22nd International Conference on Knowledge Discovery and Data Mining
– volume: 290
  start-page: 2319
  year: 2000
  end-page: 2323
  ident: bib0038
  article-title: A global geometric framework for nonlinear dimensionality reduction
  publication-title: Science
– volume: 453
  start-page: 98
  year: 2008
  end-page: 101
  ident: bib0015
  article-title: Hierarchical structure and the prediction of missing links in networks
  publication-title: Nature
– start-page: 243
  year: 2011
  end-page: 275
  ident: bib0084
  article-title: A survey of link prediction in social networks
  publication-title: Social network data analytics
– volume: 11
  start-page: 12
  year: 2016
  ident: bib0055
  article-title: Tri-party deep network representation
  publication-title: Network
– start-page: 115
  year: 2011
  end-page: 148
  ident: bib0006
  article-title: Node classification in social networks
  publication-title: Social network data analytics
– volume: 11
  year: 1978
  ident: bib0039
  article-title: Multidimensional scaling
– reference: W.L. Hamilton, R. Ying, J. Leskovec, Representation learning on graphs: methods and applications, arXiv preprint arXiv:
– volume: 5
  year: 2003
  ident: bib0094
  article-title: Overview of the 2003 kdd cup
  publication-title: ACM SIGKDD Expl.
– reference: T.N. Kipf, M. Welling, Variational graph auto-encoders, arXiv:
– volume: 30
  start-page: 1203
  year: 2000
  end-page: 1233
  ident: bib0075
  article-title: An open graph visualization system and its applications to software engineering
  publication-title: Softw. Pract. Exp.
– start-page: 13
  year: 2000
  end-page: 20
  ident: bib0087
  article-title: Iterative classification in relational data
  publication-title: Proc. Workshop on Learning Statistical Models from Relational Data
– volume: 28
  start-page: 2765
  year: 2016
  end-page: 2777
  ident: bib0099
  article-title: Scalable temporal latent space inference for link prediction in dynamic social networks
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: bib0008
  article-title: Visualizing data using t-sne
  publication-title: J. Mach. Learn. Res.
– start-page: 2111
  year: 2015
  end-page: 2117
  ident: bib0044
  article-title: Network representation learning with rich text information.
  publication-title: IJCAI
– start-page: 119
  year: 2015
  end-page: 128
  ident: bib0045
  article-title: Heterogeneous network embedding via deep architectures
  publication-title: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 6
  start-page: 24
  year: 2000
  end-page: 43
  ident: bib0078
  article-title: Graph visualization and navigation in information visualization: a survey
  publication-title: IEEE Trans. Visual. Comput. Graph.
– start-page: 107
  year: 2001
  end-page: 114
  ident: bib0007
  article-title: A min-max cut algorithm for graph partitioning and data clustering
  publication-title: International Conference on Data Mining
– start-page: 1067
  year: 2015
  end-page: 1077
  ident: bib0022
  article-title: Line: large-scale information network embedding
  publication-title: Proceedings 24th International Conference on World Wide Web
– start-page: 13
  year: 1989
  end-page: 17
  ident: bib0077
  article-title: How to draw a directed graph
  publication-title: Visual Languages, 1989., IEEE Workshop on
– start-page: 2287
  year: 2016
  end-page: 2293
  ident: bib0053
  article-title: Multi-modal bayesian embeddings for learning social knowledge graphs.
  publication-title: IJCAI
– volume: 3
  start-page: 551
  year: 1990
  end-page: 560
  ident: bib0067
  article-title: Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks
  publication-title: Neural Netw.
– volume: 19
  year: 2007
  ident: bib0050
  article-title: Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 567
  year: 2008
  end-page: 580
  ident: bib0070
  article-title: Efficient aggregation for graph summarization
  publication-title: Proceedings of the SIGMOD international conference on Management of data
– start-page: 3889
  year: 2016
  end-page: 3895
  ident: bib0046
  article-title: Max-margin deepwalk: discriminative learning of network representation.
  publication-title: IJCAI
– start-page: 824
  year: 2007
  end-page: 833
  ident: bib0081
  article-title: Scan: a structural clustering algorithm for networks
  publication-title: Proceedings 13th international conference on Knowledge discovery and data mining
– volume: 4
  start-page: 301
  year: 1994
  end-page: 328
  ident: bib0069
  article-title: The maximum clique problem
  publication-title: J. Global Optim.
– volume: 4
  start-page: 235
  year: 1994
  end-page: 282
  ident: bib0076
  article-title: Algorithms for drawing graphs: an annotated bibliography
  publication-title: Comput. Geom.
– start-page: 937
  year: 2009
  end-page: 944
  ident: bib0033
  article-title: Structure preserving embedding
  publication-title: Proceedings of the 26th Annual International Conference on Machine Learning
– start-page: 123
  year: 1991
  end-page: 133
  ident: bib0068
  article-title: Clique partitions, graph compression and speeding-up algorithms
  publication-title: Proceedings of the twenty-third annual ACM symposium on Theory of computing
– volume: 390
  start-page: 1150
  year: 2011
  end-page: 1170
  ident: bib0083
  article-title: Link prediction in complex networks: a survey
  publication-title: Physica A
– volume: 29
  start-page: 40
  year: 2007
  end-page: 51
  ident: bib0035
  article-title: Graph embedding and extensions: a general framework for dimensionality reduction
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: (2016).
– volume: 81
  start-page: 730
  year: 1976
  end-page: 780
  ident: bib0016
  article-title: Social structure from multiple networks. I. Blockmodels of roles and positions
  publication-title: Am. J. Sociol.
– volume: 23
  start-page: 228
  year: 2001
  end-page: 233
  ident: bib0037
  article-title: Pca versus lda
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 44
  start-page: 1057
  year: 2011
  end-page: 1067
  ident: bib0103
  article-title: Recent advances in graph-based pattern recognition with applications in document analysis
  publication-title: Pattern Recognition.
– start-page: 49
  year: 2007
  end-page: 56
  ident: bib0009
  article-title: The rendezvous algorithm: Multiclass semi-supervised learning with markov random walks
  publication-title: Proceedings of the 24th international conference on Machine learning
– volume: 23
  start-page: 1
  year: 2008
  end-page: 8
  ident: bib0042
  article-title: Non-negative graph embedding
  publication-title: IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)
– reference: W.L. Hamilton, R. Ying, J. Leskovec, Inductive representation learning on large graphs, arXiv:
– volume: 33
  start-page: 452
  year: 1977
  end-page: 473
  ident: bib0091
  article-title: An information flow model for conflict and fission in small groups
  publication-title: J. Anthropol. Res.
– volume: 1
  start-page: 2
  year: 2007
  ident: bib0004
  article-title: Graph evolution: densification and shrinking diameters
  publication-title: ACM Trans. Knowl. Disc. Data (TKDD)
– start-page: 609
  year: 2016
  end-page: 618
  ident: bib0047
  article-title: Homophily, structure, and content augmented network representation learning
  publication-title: Data Mining (ICDM), 2016 IEEE 16th International Conference on
– volume: 69
  start-page: 026113
  year: 2004
  ident: bib0080
  article-title: Finding and evaluating community structure in networks
  publication-title: Phys. Rev. E
– volume: 14
  start-page: 585
  year: 2001
  end-page: 591
  ident: bib0025
  article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering
  publication-title: NIPS
– start-page: 419
  year: 2008
  end-page: 432
  ident: bib0072
  article-title: Graph summarization with bounded error
  publication-title: Proceedings of the international conference on Management of data
– start-page: 1107
  year: 2009
  end-page: 1116
  ident: bib0093
  article-title: Scalable learning of collective behavior based on sparse social dimensions
  publication-title: Proceedings of the 18th ACM conference on Information and knowledge management
– start-page: 701
  year: 2014
  end-page: 710
  ident: bib0028
  article-title: Deepwalk: online learning of social representations
  publication-title: Proceedings 20th international conference on Knowledge discovery and data mining
– volume: 13
  start-page: 76
  year: 1976
  end-page: 83
  ident: bib0034
  article-title: Generalizing the singular value decomposition
  publication-title: SIAM J. Numer. Anal.
– volume: 27
  start-page: 39
  year: 2005
  end-page: 54
  ident: bib0049
  article-title: A measure of betweenness centrality based on random walks
  publication-title: Soc. Netw.
– start-page: 92
  year: 2007
  end-page: 101
  ident: bib0011
  article-title: Applying link-based classification to label blogs
  publication-title: Proceedings of WebKDD: workshop on Web mining and social network analysis
– volume: 14
  start-page: 465
  year: 1978
  end-page: 471
  ident: bib0073
  article-title: Modeling by shortest data description
  publication-title: Automatica
– volume: 1
  start-page: 4
  year: 2000
  ident: bib0002
  article-title: Visualizing social networks
  publication-title: J. Social Struct.
– reference: B. Perozzi, V. Kulkarni, S. Skiena, Walklets: multiscale graph embeddings for interpretable network classification, arXiv:
– year: 2005
  ident: bib0074
  article-title: Graphs, networks and algorithms
– volume: 268
  start-page: 2261
  year: 2001
  end-page: 2265
  ident: bib0003
  article-title: The small world of human language
  publication-title: Proc. R. Soc. Lond. B
– year: 2016
  ident: bib0054
  article-title: Discriminative deep random walk for network classification.
  publication-title: ACL (1)
– volume: 4
  start-page: 1535
  year: 2009
  end-page: 1550
  ident: bib0001
  article-title: Network visualization and analysis of gene expression data using biolayout express3d
  publication-title: Nat. Protoc.
– start-page: 115
  year: 1986
  end-page: 128
  ident: bib0036
  article-title: Principal component analysis and factor analysis
  publication-title: Principal component analysis
– reference: H. Chen, B. Perozzi, Y. Hu, S. Skiena, Harp: hierarchical representation learning for networks, arXiv:
– start-page: 3844
  year: 2016
  end-page: 3852
  ident: bib0063
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Advances in Neural Information Processing Systems
– volume: 35
  start-page: 1798
  year: 2013
  end-page: 1828
  ident: bib0058
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 18
  start-page: 39
  year: 1953
  end-page: 43
  ident: bib0085
  article-title: A new status index derived from sociometric analysis
  publication-title: Psychometrika
– reference: (2015).
– start-page: 731
  year: 2017
  end-page: 739
  ident: bib0048
  article-title: Label informed attributed network embedding
  publication-title: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining
– reference: M. Henaff, J. Bruna, Y. LeCun, Deep convolutional networks on graph-structured data, arXiv:
– volume: 22
  start-page: 888
  year: 2000
  end-page: 905
  ident: bib0020
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: P. Goyal, N. Kamra, X. He, Y. Liu, Dyngem: deep embedding method for dynamic graphs.
– volume: 82
  start-page: 8
  year: 1987
  end-page: 19
  ident: bib0090
  article-title: Stochastic blockmodels for directed graphs
  publication-title: J. Am. Stat. Assoc.
– start-page: 553
  year: 2011
  end-page: 560
  ident: bib0032
  article-title: Cauchy graph embedding
  publication-title: Proceedings of the 28th International Conference on Machine Learning (ICML-11)
– reference: Z. Yang, W.W. Cohen, R. Salakhutdinov, Revisiting semi-supervised learning with graph embeddings, arXiv:
– reference: D.P. Kingma, M. Welling, Auto-encoding variational bayes, arXiv:
– start-page: 153
  year: 2004
  end-page: 160
  ident: bib0040
  article-title: Locality preserving projections
  publication-title: Advances in neural information processing systems
– reference: J. Leskovec, A. Krevl, SNAP datasets: Stanford large network dataset collection, 2014, (
– volume: 36
  start-page: D637
  year: 2008
  end-page: D640
  ident: bib0096
  article-title: The biogrid interaction database: 2008 update
  publication-title: Nucleic Acids Res.
– reference: J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral networks and locally connected networks on graphs, arXiv:
– reference: (2013).
– start-page: 1105
  year: 2016
  end-page: 1114
  ident: bib0024
  article-title: Asymmetric transitivity preserving graph embedding
  publication-title: Proc. of ACM SIGKDD
– volume: 752
  start-page: 41
  year: 1998
  end-page: 48
  ident: bib0089
  article-title: A comparison of event models for naive bayes text classification
  publication-title: AAAI-98 workshop on learning for text categorization
– start-page: 891
  year: 2015
  end-page: 900
  ident: bib0027
  article-title: Grarep: learning graph representations with global structural information
  publication-title: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management
– start-page: 1145
  year: 2016
  end-page: 1152
  ident: bib0030
  article-title: Deep neural networks for learning graph representations
  publication-title: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence
– volume: 98
  start-page: 1031
  year: 2010
  end-page: 1044
  ident: bib0102
  article-title: Sparse representation for computer vision and pattern recognition
  publication-title: Proceedings of the IEEE
SSID ssj0002218
Score 2.6926985
Snippet Graphs, such as social networks, word co-occurrence networks, and communication networks, occur naturally in various real-world applications. Analyzing them...
SourceID elsevier
SourceType Publisher
StartPage 78
SubjectTerms Graph embedding applications
Graph embedding techniques
Python graph embedding methods GEM library
Title Graph embedding techniques, applications, and performance: A survey
URI https://dx.doi.org/10.1016/j.knosys.2018.03.022
Volume 151
WOSCitedRecordID wos000433655600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFLdK2YELH_vQ2AD5sBszcu2ktnerUIExhJDGpt6ipH6WyiCgUir-_D3HThroZSDtYiVWPhz_ouffe34fhHwxfqvHpQnLoVAsgZ5khU6BGeNwcQKjoaqi8PtMnZ_r0chcdDpndSzM_FqVpX58NHf_FWrsQ7B96OwL4G4eih14jKBji7Bj-0_AH_sU1PtwU4CtAlaaLK0VYu0N69pz824RPBAC1e8fpvOn-70_atMb88uejQmgGz5-7I0QgZAiG28szEfgi8hX9HR4M7kOLl-1jaGnG3_UaPhaCn6JFkTOFI_5YiHIT62QsCfcPBGw8ZIgIkPFnrjYhgLHS2I8WBSuDv6Ut_g93gFPV6loQwjzswTZP_1A_DhQOnlGyFfIqlCp0V2yOvg-HJ02K7MQlb23GXgdSln5-y2_q8VPWpzjcpOsR2WBDgLIW6QD5VuyURfioFEuvyOHFea0wZwuMP9K24jjWWlpC-9vdEAD2u_Jr6Ph5eEJi9UxGKCaPmO2JyXXRZK4wiHHy4VyPHWohYydBG4c6ul9gWw8L0RiUyckWO5AGm1RR7W2Lz-QbnlbwkdC07SQRV8KUBbZceJyM7ZCAc9B98aof24TVU9EFolZIFwZApbVfoJXWZjCzE9hxmWGU_jp1Xd-JmuLP3GHdGfTB9glb8bz2eR-uheR_Qul5l6B
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+embedding+techniques%2C+applications%2C+and+performance%3A+A+survey&rft.jtitle=Knowledge-based+systems&rft.au=Goyal%2C+Palash&rft.au=Ferrara%2C+Emilio&rft.date=2018-07-01&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=151&rft.spage=78&rft.epage=94&rft_id=info:doi/10.1016%2Fj.knosys.2018.03.022&rft.externalDocID=S0950705118301540
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon