RIP analysis for the weighted ℓr-ℓ1 minimization method

•The restricted isometry property (RIP) and high-order RIP analysis results for the weighted ℓr−ℓ1 minimization method are presented.•Through a novel decomposition of the objective function into a difference of two convex functions, the weighted ℓr−ℓ1 minimization problem is solved via the differenc...

Full description

Saved in:
Bibliographic Details
Published in:Signal processing Vol. 202
Main Author: Zhou, Zhiyong
Format: Journal Article
Language:English
Published: Elsevier B.V 01.01.2023
Subjects:
ISSN:0165-1684
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •The restricted isometry property (RIP) and high-order RIP analysis results for the weighted ℓr−ℓ1 minimization method are presented.•Through a novel decomposition of the objective function into a difference of two convex functions, the weighted ℓr−ℓ1 minimization problem is solved via the difference of convex functions algorithms (DCA) directly.•Numerical experiments show that the DCA based weighted ℓr−ℓ1 minimization method gives satisfactory results in sparse recovery no matter whether the measurement matrix is coherent or not.•For highly coherent measurements, the proposed method even outperforms the state-of-art ℓ1−ℓ2 minimization method. The weighted ℓr−ℓ1 minimization method with 0<r≤1 largely generalizes the classical ℓr minimization method and achieves very good performance in compressive sensing. However, its restricted isometry property (RIP) and high-order RIP analysis results remain unknown. In this paper, we fill in this gap by adopting newly developed analysis tools. Moreover, through a novel decomposition of the objective function into a difference of two convex functions, we propose to solve the weighted ℓr−ℓ1 minimization problem via the difference of convex functions algorithms (DCA) directly. Numerical experiments show that our DCA based weighted ℓr−ℓ1 minimization method gives satisfactory results in sparse recovery no matter whether the measurement matrix is coherent or not. For highly coherent measurements, our proposed method even outperforms the state-of-art ℓ1−ℓ2 minimization method.
AbstractList •The restricted isometry property (RIP) and high-order RIP analysis results for the weighted ℓr−ℓ1 minimization method are presented.•Through a novel decomposition of the objective function into a difference of two convex functions, the weighted ℓr−ℓ1 minimization problem is solved via the difference of convex functions algorithms (DCA) directly.•Numerical experiments show that the DCA based weighted ℓr−ℓ1 minimization method gives satisfactory results in sparse recovery no matter whether the measurement matrix is coherent or not.•For highly coherent measurements, the proposed method even outperforms the state-of-art ℓ1−ℓ2 minimization method. The weighted ℓr−ℓ1 minimization method with 0<r≤1 largely generalizes the classical ℓr minimization method and achieves very good performance in compressive sensing. However, its restricted isometry property (RIP) and high-order RIP analysis results remain unknown. In this paper, we fill in this gap by adopting newly developed analysis tools. Moreover, through a novel decomposition of the objective function into a difference of two convex functions, we propose to solve the weighted ℓr−ℓ1 minimization problem via the difference of convex functions algorithms (DCA) directly. Numerical experiments show that our DCA based weighted ℓr−ℓ1 minimization method gives satisfactory results in sparse recovery no matter whether the measurement matrix is coherent or not. For highly coherent measurements, our proposed method even outperforms the state-of-art ℓ1−ℓ2 minimization method.
ArticleNumber 108754
Author Zhou, Zhiyong
Author_xml – sequence: 1
  givenname: Zhiyong
  orcidid: 0000-0001-9861-6134
  surname: Zhou
  fullname: Zhou, Zhiyong
  email: zhiyongzhou@zucc.edu.cn
  organization: Department of Statistics and Data Science, Zhejiang University City College, Hangzhou 310015, China
BookMark eNotj9FKwzAYhXMxwW36Bl7kBVrzp01MEQQZ6gYDRfQ6_Gv_rilrKk1Q9No38A19EjvqzTlwDpzDt2Az33ti7AJECgL0ZZsGt38b-lQKKcfIXKl8xuZjpRLQJj9lixBaIQRkWszZ9fPmiaPHw2dwgdf9wGND_IPcvolU8d_vnyEZBXjnvOvcF0bXe95RbPrqjJ3UeAh0_u9L9np_97JaJ9vHh83qdpuQBBGTgoSGWmmUlCFCQYDGoKxNhUruUOsdFsqUWkkDQpU5oSxkTkUNxsixypbsZtql8eTd0WBD6ciXVLmBymir3lkQ9ohvWzvh2yO-nfCzP5vkVcQ
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DOI 10.1016/j.sigpro.2022.108754
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID S0165168422002936
GrantInformation_xml – fundername: Zhejiang Provincial Natural Science Foundation of China
  grantid: LQ21A010003, and a research grant from Institute of Digital Finance, Zhejiang University City College.
  funderid: https://doi.org/10.13039/501100004731
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABDPE
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~02
~G-
ID FETCH-LOGICAL-e210t-9e061f56a2e3aa19e1a88a2f8da52ba66ba958c6528105c4ea2924e9f1882a953
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000862589400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0165-1684
IngestDate Sun Apr 06 06:54:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Compressive sensing
Restricted isometry property
Difference of convex functions algorithms
Nonconvex sparse recovery
Weighted ℓr−ℓ1 minimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-e210t-9e061f56a2e3aa19e1a88a2f8da52ba66ba958c6528105c4ea2924e9f1882a953
ORCID 0000-0001-9861-6134
ParticipantIDs elsevier_sciencedirect_doi_10_1016_j_sigpro_2022_108754
PublicationCentury 2000
PublicationDate January 2023
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Signal processing
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wen, Weng, Tong, Ren, Zhou (bib0019) 2019; 68
J. Huang, F. Zhang, X. Liu, J. Wang, Stable Recovery of Sparse Signals with Non-convex Weighted r-Norm Minus 1-Norm, 2022.
Gasso, Rakotomamonjy, Canu (bib0049) 2009; 57
Li, Lin (bib0012) 2014; 8
(2021).
Chen, Wan (bib0040) 2019; 363
Lin, Li (bib0013) 2016; 62
Lyu, Lin, She, Zhang (bib0052) 2013; 119
Zhou, Yu (bib0030) 2019; 155
Tao, An (bib0036) 1998; 8
Boyd, Parikh, Chu, Peleato, Eckstein (bib0005) 2011; 3
Fan, Li (bib0009) 2001; 96
Candes, Tao (bib0048) 2007; 35
M. Grant, S. Boyd, CVX: Matlab software for disciplined convex programming, version 2.1, 2014.
Zhang, Zhang (bib0027) 2021
Wen, Chu, Liu, Qiu (bib0022) 2018; 6
Chartrand, Yin (bib0033) 2008
Lai, Xu, Yin (bib0034) 2013; 51
Foucart, Rauhut (bib0002) 2013; vol. 1
Chartrand (bib0010) 2007; 14
Wen, Li, Zhu (bib0043) 2015; 38
Blumensath, Davies (bib0008) 2009; 27
Xu, Chang, Xu, Zhang (bib0015) 2012; 23
Chartrand, Staneva (bib0029) 2008; 24
Cai, Zhang (bib0039) 2013; 60
Zhang, Li (bib0046) 2017; 64
Ge, Chen, Ng (bib0032) 2021; 14
Cai, Zhang (bib0038) 2013; 35
Yang, Shen, Ma, Gu, So (bib0045) 2018; 66
Wu, Chen (bib0044) 2013; 59
Z. Zhou, Sparse recovery based on the generalized error function
Tao, An (bib0035) 1997; 22
Zhou, Yu (bib0025) 2019; 5
Candes, Tao (bib0037) 2005; 51
Wan (bib0047) 2020; 68
Sun (bib0042) 2012; 32
Yan, Shin, Xiu (bib0020) 2017; 39
Zhou (bib0024) 2022; 29
Guan, Gray (bib0050) 2013; 67
Ma, Lou, Huang (bib0017) 2017; 10
Tibshirani (bib0004) 1996; 58
Cai (bib0026) 2021; 19
Zhang, Li (bib0031) 2019; 47
Needell, Tropp (bib0007) 2009; 26
Song, Xia (bib0041) 2014; 21
Chen, Donoho, Saunders (bib0003) 1998; 20
Zhang, Xin (bib0016) 2018; 169
Wang, Wang (bib0018) 2019; 55
Shen, Li (bib0014) 2012; 37
Tropp, Gilbert (bib0006) 2007; 53
Foucart, Lai (bib0011) 2009; 26
Yin, Lou, He, Xin (bib0021) 2015; 37
Le Thi, Dinh, Le, Vo (bib0051) 2015; 244
Eldar, Kutyniok (bib0001) 2012
References_xml – volume: 8
  start-page: 476
  year: 1998
  end-page: 505
  ident: bib0036
  article-title: A DC optimization algorithm for solving the trust-region subproblem
  publication-title: SIAM J. Optim.
– volume: 21
  start-page: 1154
  year: 2014
  end-page: 1158
  ident: bib0041
  article-title: Sparse signal recovery by
  publication-title: IEEE Signal Process. Lett.
– volume: 119
  start-page: 413
  year: 2013
  end-page: 424
  ident: bib0052
  article-title: A comparison of typical
  publication-title: Neurocomputing
– volume: 59
  start-page: 6142
  year: 2013
  end-page: 6147
  ident: bib0044
  article-title: The improved bounds of restricted isometry constant for recovery via
  publication-title: IEEE Trans. Inf. Theory
– volume: 62
  start-page: 4733
  year: 2016
  end-page: 4747
  ident: bib0013
  article-title: Restricted
  publication-title: IEEE Trans. Inf. Theory
– reference: Z. Zhou, Sparse recovery based on the generalized error function,
– volume: vol. 1
  year: 2013
  ident: bib0002
  article-title: A Mathematical Introduction to Compressive Sensing
– start-page: 3869
  year: 2008
  end-page: 3872
  ident: bib0033
  article-title: Iteratively reweighted algorithms for compressive sensing
  publication-title: Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE international Conference on
– volume: 66
  start-page: 5014
  year: 2018
  end-page: 5028
  ident: bib0045
  article-title: Sparse recovery conditions and performance bounds for
  publication-title: IEEE Trans. Signal Process.
– volume: 6
  start-page: 69883
  year: 2018
  end-page: 69906
  ident: bib0022
  article-title: A survey on nonconvex regularization-based sparse and low-rank recovery in signal processing, statistics, and machine learning
  publication-title: IEEE Access
– volume: 96
  start-page: 1348
  year: 2001
  end-page: 1360
  ident: bib0009
  article-title: Variable selection via nonconcave penalized likelihood and its oracle properties
  publication-title: J. Am. Stat. Assoc.
– volume: 64
  start-page: 1699
  year: 2017
  end-page: 1705
  ident: bib0046
  article-title: A proof of conjecture on restricted isometry property constants
  publication-title: IEEE Trans. Inf. Theory
– volume: 47
  start-page: 566
  year: 2019
  end-page: 584
  ident: bib0031
  article-title: Optimal RIP bounds for sparse signals recovery via
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 26
  start-page: 301
  year: 2009
  end-page: 321
  ident: bib0007
  article-title: CoSaMP: iterative signal recovery from incomplete and inaccurate samples
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 20
  start-page: 33
  year: 1998
  end-page: 61
  ident: bib0003
  article-title: Atomic decomposition by basis pursuit
  publication-title: SIAM J. Sci. Comput.
– start-page: 2150057
  year: 2021
  ident: bib0027
  article-title: Recovery analysis for block
  publication-title: Int. J. Wavelets Multiresolut Inf. Process.
– volume: 51
  start-page: 4203
  year: 2005
  end-page: 4215
  ident: bib0037
  article-title: Decoding by linear programming
  publication-title: IEEE Trans. Inf. Theory
– volume: 67
  start-page: 136
  year: 2013
  end-page: 148
  ident: bib0050
  article-title: Sparse high-dimensional fractional-norm support vector machine via DC programming
  publication-title: Comput. Stat. Data Anal.
– volume: 14
  start-page: 530
  year: 2021
  end-page: 557
  ident: bib0032
  article-title: New restricted isometry property analysis fo
  publication-title: SIAM J. Imaging Sci.
– volume: 32
  start-page: 329
  year: 2012
  end-page: 341
  ident: bib0042
  article-title: Recovery of sparsest signals via
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 68
  start-page: 5379
  year: 2020
  end-page: 5394
  ident: bib0047
  article-title: Uniform RIP conditions for recovery of sparse signals by
  publication-title: IEEE Trans. Signal Process.
– volume: 35
  start-page: 2313
  year: 2007
  end-page: 2351
  ident: bib0048
  article-title: The Dantzig selector: statistical estimation when
  publication-title: Ann. Stat.
– volume: 244
  start-page: 26
  year: 2015
  end-page: 46
  ident: bib0051
  article-title: DC approximation approaches for sparse optimization
  publication-title: Eur. J. Oper. Res.
– volume: 37
  start-page: A536
  year: 2015
  end-page: A563
  ident: bib0021
  article-title: Minimization of
  publication-title: SIAM J. Sci. Comput.
– volume: 22
  start-page: 289
  year: 1997
  end-page: 355
  ident: bib0035
  article-title: Convex analysis approach to dc programming: theory, algorithms and applications
  publication-title: Acta Math. Vietnam.
– reference: (2021).
– reference: J. Huang, F. Zhang, X. Liu, J. Wang, Stable Recovery of Sparse Signals with Non-convex Weighted r-Norm Minus 1-Norm, 2022.
– volume: 57
  start-page: 4686
  year: 2009
  end-page: 4698
  ident: bib0049
  article-title: Recovering sparse signals with a certain family of nonconvex penalties and dc programming
  publication-title: IEEE Trans. Signal Process.
– volume: 55
  start-page: 1199
  year: 2019
  end-page: 1201
  ident: bib0018
  article-title: Improved sufficient condition of
  publication-title: Electron. Lett.
– reference: M. Grant, S. Boyd, CVX: Matlab software for disciplined convex programming, version 2.1, 2014.
– year: 2012
  ident: bib0001
  article-title: Compressed Sensing: Theory and Applications
– volume: 3
  start-page: 1
  year: 2011
  end-page: 122
  ident: bib0005
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found. Trends® Mach. Learn.
– volume: 38
  start-page: 161
  year: 2015
  end-page: 176
  ident: bib0043
  article-title: Stable recovery of sparse signals via
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 35
  start-page: 74
  year: 2013
  end-page: 93
  ident: bib0038
  article-title: Sharp RIP bound for sparse signal and low-rank matrix recovery
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 26
  start-page: 395
  year: 2009
  end-page: 407
  ident: bib0011
  article-title: Sparsest solutions of underdetermined linear systems via
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 19
  start-page: 343
  year: 2021
  end-page: 361
  ident: bib0026
  article-title: Weighted
  publication-title: Anal. Appl.
– volume: 23
  start-page: 1013
  year: 2012
  end-page: 1027
  ident: bib0015
  article-title: regularization: a thresholding representation theory and a fast solver
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 363
  start-page: 306
  year: 2019
  end-page: 312
  ident: bib0040
  article-title: General RIP bounds of
  publication-title: Neurocomputing
– volume: 51
  start-page: 927
  year: 2013
  end-page: 957
  ident: bib0034
  article-title: Improved iteratively reweighted least squares for unconstrained smoothed
  publication-title: SIAM J. Numer. Anal.
– volume: 169
  start-page: 307
  year: 2018
  end-page: 336
  ident: bib0016
  article-title: Minimization of transformed
  publication-title: Math. Program.
– volume: 8
  start-page: 761
  year: 2014
  end-page: 777
  ident: bib0012
  article-title: Compressed sensing with coherent tight frames via
  publication-title: Inverse Probl. Imaging
– volume: 53
  start-page: 4655
  year: 2007
  end-page: 4666
  ident: bib0006
  article-title: Signal recovery from random measurements via orthogonal matching pursuit
  publication-title: IEEE Trans. Inf. Theory
– volume: 155
  start-page: 247
  year: 2019
  end-page: 258
  ident: bib0030
  article-title: Sparse recovery based on
  publication-title: Signal Process.
– volume: 39
  start-page: A229
  year: 2017
  end-page: A254
  ident: bib0020
  article-title: Sparse approximation using
  publication-title: SIAM J. Sci. Comput.
– volume: 5
  start-page: 14
  year: 2019
  ident: bib0025
  article-title: A new nonconvex sparse recovery method for compressive sensing
  publication-title: Front. Appl. Math. Stat.
– volume: 27
  start-page: 265
  year: 2009
  end-page: 274
  ident: bib0008
  article-title: Iterative hard thresholding for compressed sensing
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 14
  start-page: 707
  year: 2007
  end-page: 710
  ident: bib0010
  article-title: Exact reconstruction of sparse signals via nonconvex minimization
  publication-title: IEEE Signal Process. Lett.
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: bib0004
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J. R. Stat. Soc. Ser. B.
– volume: 29
  start-page: 479
  year: 2022
  end-page: 483
  ident: bib0024
  article-title: A unified framework for constructing nonconvex regularizations
  publication-title: IEEE Signal Process. Lett.
– volume: 68
  start-page: 6847
  year: 2019
  end-page: 6854
  ident: bib0019
  article-title: Sparse signal recovery with minimization of 1-norm minus 2-norm
  publication-title: IEEE Trans. Veh. Technol.
– volume: 24
  start-page: 035020
  year: 2008
  ident: bib0029
  article-title: Restricted isometry properties and nonconvex compressive sensing
  publication-title: Inverse Probl.
– volume: 37
  start-page: 441
  year: 2012
  end-page: 452
  ident: bib0014
  article-title: Restricted
  publication-title: Adv. Comput. Math.
– volume: 60
  start-page: 122
  year: 2013
  end-page: 132
  ident: bib0039
  article-title: Sparse representation of a polytope and recovery of sparse signals and low-rank matrices
  publication-title: IEEE Trans. Inf. Theory
– volume: 10
  start-page: 1346
  year: 2017
  end-page: 1380
  ident: bib0017
  article-title: Truncated
  publication-title: SIAM J. Imaging Sci.
SSID ssj0001360
Score 2.445291
Snippet •The restricted isometry property (RIP) and high-order RIP analysis results for the weighted ℓr−ℓ1 minimization method are presented.•Through a novel...
SourceID elsevier
SourceType Publisher
SubjectTerms Compressive sensing
Difference of convex functions algorithms
Nonconvex sparse recovery
Restricted isometry property
Weighted [formula omitted] minimization
Title RIP analysis for the weighted ℓr-ℓ1 minimization method
URI https://dx.doi.org/10.1016/j.sigpro.2022.108754
Volume 202
WOSCitedRecordID wos000862589400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0165-1684
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001360
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LTuMwFLWGlgUs0AwPAfOQF7Cqgho7dmzNqhp1NJ0FQgNI3UVO4pQikaK2vPb8AX_Il3D96kR0AyPNxrIcxXF8outzb-4DoYMkp1VJKx7xvExMSI4GOVglESuZ8WUsu2Va2mIT6fGxGA7lia_pObPlBNK6Fvf38vq_Qg1jALYJnX0H3ItJYQD6ADq0ADu0bwL-z-Cko0KqkeBEeGctoEAurXNDcijpNFp0445JMHLlIzJ9Uekmaz0djwxpvXZBBeGws-bmyY39vXExfpj4YW9CIPSVCWE5tsWZGjmLYu4KuAVZSWx49LLcdSaAy6PZeARrAbWbEOO9mLoE0a8yWp-aqc3MxHiISMpXUJukTIoWavcG_eHvxVEaUxvmvVhKiH20DnrLz2oQigZJOPuINjy7xz2Hyif0QdebaL2R83ELfQd8cMAHAz4Y8MEBH_z8-DSNoIlxExPsMNlG5z_7Zz9-Rb6CRaRBlZ5HUgNdqhhXRFOlYqljJYQilSgVI7niPFeSiYIzIoDnFolWBPRhLasYFB-4RHdQq57UehdhpksQn2lVgMKa5LIS3YLLIk6BhTDaTdQeSsO7Z548OVKUAUZZ8OW7zNyuZWbXMrdr-_9852e09vdz-oJa8-mN_opWi9v5eDb95sF8AVlWPnc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RIP+analysis+for+the+weighted+%E2%84%93r-%E2%84%931+minimization+method&rft.jtitle=Signal+processing&rft.au=Zhou%2C+Zhiyong&rft.date=2023-01-01&rft.pub=Elsevier+B.V&rft.issn=0165-1684&rft.volume=202&rft_id=info:doi/10.1016%2Fj.sigpro.2022.108754&rft.externalDocID=S0165168422002936
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon