A robust kernelized intuitionistic fuzzy c-means clustering algorithm in segmentation of noisy medical images

This paper presents an automatic effective intuitionistic fuzzy c-means which is an extension of standard intuitionisitc fuzzy c-means (IFCM). We present a model called RBF Kernel based intuitionistic fuzzy c-means (KIFCM) where IFCM is extended by adopting a kernel induced metric in the data space...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition letters Jg. 34; H. 2; S. 163 - 175
Hauptverfasser: Kaur, Prabhjot, Soni, A.K., Gosain, Anjana
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 15.01.2013
Schlagworte:
ISSN:0167-8655, 1872-7344
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper presents an automatic effective intuitionistic fuzzy c-means which is an extension of standard intuitionisitc fuzzy c-means (IFCM). We present a model called RBF Kernel based intuitionistic fuzzy c-means (KIFCM) where IFCM is extended by adopting a kernel induced metric in the data space to replace the original Euclidean norm metric. By using kernel function it becomes possible to cluster data, which is linearly non-separable in the original space, into homogeneous groups by transforming the data into high dimensional space. Proposed clustering method is applied on synthetic data-sets referred from various papers, real data-sets from Public Library UCI, Simulated and Real MR brain images. Experimental results are given to show the effectiveness of proposed method in contrast to conventional fuzzy c-means, possibilistic c-means, possibilistic fuzzy c-means, noise clustering, kernelized fuzzy c-means, type-2 fuzzy c-means, kernelized type-2 fuzzy c-means, and intuitionistic fuzzy c-means.
AbstractList This paper presents an automatic effective intuitionistic fuzzy c-means which is an extension of standard intuitionisitc fuzzy c-means (IFCM). We present a model called RBF Kernel based intuitionistic fuzzy c-means (KIFCM) where IFCM is extended by adopting a kernel induced metric in the data space to replace the original Euclidean norm metric. By using kernel function it becomes possible to cluster data, which is linearly non-separable in the original space, into homogeneous groups by transforming the data into high dimensional space. Proposed clustering method is applied on synthetic data-sets referred from various papers, real data-sets from Public Library UCI, Simulated and Real MR brain images. Experimental results are given to show the effectiveness of proposed method in contrast to conventional fuzzy c-means, possibilistic c-means, possibilistic fuzzy c-means, noise clustering, kernelized fuzzy c-means, type-2 fuzzy c-means, kernelized type-2 fuzzy c-means, and intuitionistic fuzzy c-means.
Author Kaur, Prabhjot
Gosain, Anjana
Soni, A.K.
Author_xml – sequence: 1
  givenname: Prabhjot
  surname: Kaur
  fullname: Kaur, Prabhjot
  email: thisisprabhjot@gmail.com
  organization: Department of Information Technology, Maharaja Surajmal Institute of Technology, C-4, Janakpuri, New Delhi 110 058, India
– sequence: 2
  givenname: A.K.
  surname: Soni
  fullname: Soni, A.K.
  email: ak.soni@sharda.ac.in
  organization: Department of Computer Science, Sharda University, Greater Noida, Uttar Pradesh, India
– sequence: 3
  givenname: Anjana
  surname: Gosain
  fullname: Gosain, Anjana
  email: anjana_gosain@hotmail.com
  organization: Department of Information Technology, USIT, Guru Gobind Singh Indraprastha University, New Delhi, India
BookMark eNotkM1OwzAQhC1UJNrCG3DwCySs8-PYF6Sq4k-qxAXOlmtvgkvioNhBap8eV-U0l5nZnW9FFn70SMg9g5wB4w-H_EfHCU1eACtykDmw-oosmWiKrCmrakGWydZkgtf1DVmFcAAAXkqxJMOGTuN-DpF-4-Sxdye01Pk4u-hG70J0hrbz6XSkJhtQ-0BNn9w4Od9R3Xfj5OLXkBI0YDegj_qco2NL_ejCkQ5ondE9dYPuMNyS61b3Ae_-dU0-n58-tq_Z7v3lbbvZZVgwiFltwJqCY2VAahStFS1waY20UjQIzJqqEMWe6z1v67oRaUklZdvI2pTWaF6uyeOlF9ORX4eTCsahN-mZhCkqOzrFQJ3hqYO6wFNneAqkSvDKP9fcass
ContentType Journal Article
Copyright 2012 Elsevier B.V.
Copyright_xml – notice: 2012 Elsevier B.V.
DOI 10.1016/j.patrec.2012.09.015
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1872-7344
EndPage 175
ExternalDocumentID S0167865512003005
GroupedDBID --M
.DC
.~1
0R~
123
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
J1W
JJJVA
KOM
LG9
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
WH7
XPP
ZMT
~G-
ID FETCH-LOGICAL-e210t-5c0dc26e4c09ae8fd8f069dc9d987e01dc4282b6ab6f5578398499f795c3dca63
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000313608500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-8655
IngestDate Fri Feb 23 02:26:37 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Fuzzy clustering
Robust image segmentation
Intuitionistic fuzzy c-means
RBF kernel based intuitionistic fuzzy c-means
Fuzzy c-means
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-e210t-5c0dc26e4c09ae8fd8f069dc9d987e01dc4282b6ab6f5578398499f795c3dca63
PageCount 13
ParticipantIDs elsevier_sciencedirect_doi_10_1016_j_patrec_2012_09_015
PublicationCentury 2000
PublicationDate 2013-01-15
PublicationDateYYYYMMDD 2013-01-15
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-15
  day: 15
PublicationDecade 2010
PublicationTitle Pattern recognition letters
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zadeh (b0075) 1965; 8
Rhee, F.C.H., Hwang, C., 2001. A type-2 fuzzy c means clustering algorithm. In: Proc. Joint 9th IFSA World Congress and 20th NAFIPS Internat. Conf., vol. 4, pp. 1926–1929.
Krishnapuram, Keller (b0045) 1993; 1
Bensaid, Hall, Bezdek, Clarke, Silbiger, Arrington, Murtagh (b0015) 1996; 4
Kang, Jiayin, Min, Lequan (b0085) 2009; 19
Pal, Pal, Keller, Bezdek (b0055) 2005; 13
Chaira (b0030) 2011; 11
Masulli, Schenone (b0050) 1999; 16
Zhang, Chen (b0090) 2007; 22
.
BrainWeb [Online]. Available from
Atanassov’s, K.T. (1983). Intuitionistic fuzzy sets, VII ITKR’s Session, Sofia, 983 (Deposed in Central Science–Technology Library of Bulgaria Academy of Science–1697/84).
Bezdek (b0020) 1981
Dunn (b0040) 1974; 3
Yang, Chung (b0065) 2009
Dave, Krishnapuram (b0035) 1997; 5
Atanassov, K.T., 2003. Intuitionistic Fuzzy Sets Past, Present and Future.
References_xml – volume: 19
  start-page: 309
  year: 2009
  end-page: 319
  ident: b0085
  article-title: Novel modified fuzzy c-means algorithm with applications
  publication-title: Digital Signal Processing
– reference: Atanassov, K.T., 2003. Intuitionistic Fuzzy Sets Past, Present and Future.
– volume: 13
  start-page: 517
  year: 2005
  end-page: 530
  ident: b0055
  article-title: A possibilistic fuzzy c-means clustering algorithm
  publication-title: IEEE Trans. Fuzzy Systems
– start-page: 80
  year: 2009
  end-page: 84
  ident: b0065
  article-title: Robust fuzzy clustering-based image segmentation
  publication-title: Appl. Soft Comput.
– volume: 4
  start-page: 112
  year: 1996
  end-page: 123
  ident: b0015
  article-title: Validity-guided clustering with applications to image segmentation
  publication-title: IEEE Trans. Fuzzy Systems
– volume: 11
  start-page: 1711
  year: 2011
  end-page: 1717
  ident: b0030
  article-title: A novel intuitionistic fuzzy c means clustering algorithm and its application to medical images
  publication-title: Appl. Soft Comput.
– reference: Atanassov’s, K.T. (1983). Intuitionistic fuzzy sets, VII ITKR’s Session, Sofia, 983 (Deposed in Central Science–Technology Library of Bulgaria Academy of Science–1697/84).
– volume: 16
  start-page: 129
  year: 1999
  end-page: 147
  ident: b0050
  article-title: A fuzzy clustering based segmentation system as support to diagnosis in medical imaging
  publication-title: Artif. Intell. Med.
– reference: .
– volume: 8
  start-page: 338
  year: 1965
  end-page: 353
  ident: b0075
  article-title: Fuzzy sets
  publication-title: Inform. Control
– reference: BrainWeb [Online]. Available from:
– volume: 5
  year: 1997
  ident: b0035
  article-title: Robust clustering methods: a unified view
  publication-title: IEEE Trans. Fuzzy Systems
– year: 1981
  ident: b0020
  article-title: Pattern Recognition with Fuzzy Objective Function Algorithm
– volume: 22
  start-page: 882
  year: 2007
  end-page: 888
  ident: b0090
  article-title: On clustering approach to intuitionistic fuzzy sets
  publication-title: Control and Decision
– volume: 1
  start-page: 98
  year: 1993
  end-page: 110
  ident: b0045
  article-title: A possibilistic approach to clustering
  publication-title: IEEE Trans. Fuzzy Systems
– volume: 3
  start-page: 32
  year: 1974
  end-page: 57
  ident: b0040
  article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well separated clusters
  publication-title: J. Cybernet.
– reference: Rhee, F.C.H., Hwang, C., 2001. A type-2 fuzzy c means clustering algorithm. In: Proc. Joint 9th IFSA World Congress and 20th NAFIPS Internat. Conf., vol. 4, pp. 1926–1929.
SSID ssj0006398
Score 2.2210002
Snippet This paper presents an automatic effective intuitionistic fuzzy c-means which is an extension of standard intuitionisitc fuzzy c-means (IFCM). We present a...
SourceID elsevier
SourceType Publisher
StartPage 163
SubjectTerms Fuzzy c-means
Fuzzy clustering
Intuitionistic fuzzy c-means
RBF kernel based intuitionistic fuzzy c-means
Robust image segmentation
Title A robust kernelized intuitionistic fuzzy c-means clustering algorithm in segmentation of noisy medical images
URI https://dx.doi.org/10.1016/j.patrec.2012.09.015
Volume 34
WOSCitedRecordID wos000313608500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7344
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006398
  issn: 0167-8655
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF6M00N7SNu0pU0f7KE3IbOynns0JaUvgiEp-Ca0q1UiV4-iR0j8P_p_O_uQrOBLW-hFGMHKy8zHzOzszDcIvYeo1mVOwG1PXhJ6bpTZSUZ8O3MIE1SwgGnK_G_h-Xm02dD1bPZr6IW5KcKqim5v6c__qmp4B8qWrbN_oe7xo_ACfoPS4Qlqh-cfKX5lNTXr2876IZpKFPlOSHqlrle1WYqW2cr63e7O4nYpwFFZvOglW4LqViyu6ibvrkuZBmnFVWk6k1RMWdV5e6cv4yVTRwmWqJ3GtmtF1SnbY0xNEiwrVLfQ_sIo6RVC1k3Crrf1WHJzUavJUtZq8XUxVgTVbTIQHGwTPeR7yE_IWRGOrTs0ddLsoHFG5zHBPsueWO2GtO2NQgj2XU0HORhnk-nMJ2dkbWkdYxe103b0-JUDf6BTE9uFvFgQkrFSpn7pgpgN3mfavpC7kptyZMWeYsY9WoY-jeboaPX5bPNldPEQ1kUDabxcMPRkqsLBw_-aBDqT4OXyCTo2pw680mh5imaiOkGPh4ke2Bj4E_RoQk_5DJUrrKGE91DC96GEFZSwgRLeQwmPUIIVeAolXGdYQQkbKGENpefo-8ezyw-fbDOewxZLh3S2z0nKl4HwOKGJiLI0ykhAU05TGoWCOCmHo-2SBQkLMh8cA8gMjtdZSH3upjwJ3BdoXtWVeIkwy6KAeYwnsq8EzEQimOd6lDNYT3zivELhIMDYRIY64otB0fFQqLiNtehjKfqY0BhEf_rPK1-jh3s4v0HzrunFW_SA33R527wziPgNtBGQXA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+robust+kernelized+intuitionistic+fuzzy+c-means+clustering+algorithm+in+segmentation+of+noisy+medical+images&rft.jtitle=Pattern+recognition+letters&rft.au=Kaur%2C+Prabhjot&rft.au=Soni%2C+A.K.&rft.au=Gosain%2C+Anjana&rft.date=2013-01-15&rft.pub=Elsevier+B.V&rft.issn=0167-8655&rft.eissn=1872-7344&rft.volume=34&rft.issue=2&rft.spage=163&rft.epage=175&rft_id=info:doi/10.1016%2Fj.patrec.2012.09.015&rft.externalDocID=S0167865512003005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon