Limit points of Aα-matrices of graphs
We study limit points of the spectral radii of Aα-matrices of graphs. Adapting a method used by J. B. Shearer in 1989, we prove a density property of Aα-limit points of caterpillars for α close to zero. Precisely, we show that for α∈[0,12) there exists a positive number τ2(α)>2 such that any valu...
Uloženo v:
| Vydáno v: | Linear algebra and its applications Ročník 728; s. 1 - 25 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.01.2026
|
| Témata: | |
| ISSN: | 0024-3795 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We study limit points of the spectral radii of Aα-matrices of graphs. Adapting a method used by J. B. Shearer in 1989, we prove a density property of Aα-limit points of caterpillars for α close to zero. Precisely, we show that for α∈[0,12) there exists a positive number τ2(α)>2 such that any value λ>τ2(α) is an Aα-limit point. We also determine other intervals whose numbers are all Aα-limit points. |
|---|---|
| ISSN: | 0024-3795 |
| DOI: | 10.1016/j.laa.2025.08.014 |