Process Superstructure Optimization through Discrete Steepest Descent Optimization: a GDP Analysis and Applications in Process Intensification

This manuscript introduces a Logic-based Discrete-Steepest Descent Algorithm (LD- SDA) to tackle problems arising from process superstructure optimization. These problems often appear in Process Systems Engineering and become challenging when addressing Process Intensification applications. The curr...

Full description

Saved in:
Bibliographic Details
Published in:Computer Aided Chemical Engineering Vol. 49; pp. 1279 - 1284
Main Authors: Bernal, David E., Ovalle, Daniel, Liñán, David A., Ricardez-Sandoval, Luis A., Gómez, Jorge M., Grossmann, Ignacio E.
Format: Book Chapter
Language:English
Published: 2022
Subjects:
ISBN:9780323851596, 0323851592
ISSN:1570-7946
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This manuscript introduces a Logic-based Discrete-Steepest Descent Algorithm (LD- SDA) to tackle problems arising from process superstructure optimization. These problems often appear in Process Systems Engineering and become challenging when addressing Process Intensification applications. The current algorithm considers a disjunctive interpretation of these optimization problems through Generalized Disjunctive Programming (GDP). This formulation allows further analysis of the solution method as a tailored approach for GDP and results in a general open-source implementation of the method relying on the modeling paradigm Pyomo.GDP. Complementing our previous studies in the subject, we compare the LD-SDA against other well-known GDP solution methods and a D-SDA that does not consider the disjunctive nature of these problems. The results showcase the advantages of LD-SDA when dealing with superstructure problems arising from process intensification.
AbstractList This manuscript introduces a Logic-based Discrete-Steepest Descent Algorithm (LD- SDA) to tackle problems arising from process superstructure optimization. These problems often appear in Process Systems Engineering and become challenging when addressing Process Intensification applications. The current algorithm considers a disjunctive interpretation of these optimization problems through Generalized Disjunctive Programming (GDP). This formulation allows further analysis of the solution method as a tailored approach for GDP and results in a general open-source implementation of the method relying on the modeling paradigm Pyomo.GDP. Complementing our previous studies in the subject, we compare the LD-SDA against other well-known GDP solution methods and a D-SDA that does not consider the disjunctive nature of these problems. The results showcase the advantages of LD-SDA when dealing with superstructure problems arising from process intensification.
Author Liñán, David A.
Gómez, Jorge M.
Bernal, David E.
Ricardez-Sandoval, Luis A.
Grossmann, Ignacio E.
Ovalle, Daniel
Author_xml – sequence: 1
  givenname: David E.
  surname: Bernal
  fullname: Bernal, David E.
  email: grossmann@cmu.edu
  organization: Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, United States of America
– sequence: 2
  givenname: Daniel
  surname: Ovalle
  fullname: Ovalle, Daniel
  organization: Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, United States of America
– sequence: 3
  givenname: David A.
  surname: Liñán
  fullname: Liñán, David A.
  organization: Department of Chemical Engineering, University of Waterloo, Ontario N2L 3G1, Canada
– sequence: 4
  givenname: Luis A.
  surname: Ricardez-Sandoval
  fullname: Ricardez-Sandoval, Luis A.
  organization: Department of Chemical Engineering, University of Waterloo, Ontario N2L 3G1, Canada
– sequence: 5
  givenname: Jorge M.
  surname: Gómez
  fullname: Gómez, Jorge M.
  organization: Departamento de Ingeniería Química y de Alimentos, Universidad de Los Andes, Bogotá 111711, Colombia
– sequence: 6
  givenname: Ignacio E.
  surname: Grossmann
  fullname: Grossmann, Ignacio E.
  organization: Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, United States of America
BookMark eNpVkNFKwzAUhgNOcM69Q_A-M13apPFubjoHgw2msLuQpqcuMNOSpII-hM9sV-eFV4fD9_P_8F2jgasdIHSb0ElCE373IEVOKGFTRvIsySThk4xOE0b2F2jcMdqRHvABGiaZoETIlF-hcQi2oKmkeZ4KMUTfW18bCAHv2gZ8iL41sfWAN0207_ZLR1s7HA--bt8OeGGD8RAB7yJAAyHiBQQDLv6L32ONl4stnjl9_Aw2YO1KPGuaozU9D9g6_De7chFcsNWZ3aDLSh8DjM93hF6fHl_mz2S9Wa7mszWBhEtGIGNiqrUoKi0pT1PJu68EoJVOdV6wQgupK9PFUgNcM5BlkWVlqgueVUVF2QgtfnuhG_mw4FUwFpyB0nowUZW1VQlVJ9XqpFpR1QlVvVHFVa9a7dkP0a96Cg
ContentType Book Chapter
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DOI 10.1016/B978-0-323-85159-6.50213-X
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EndPage 1284
ExternalDocumentID B978032385159650213X
GroupedDBID 38.
AABBV
AAVWF
ALMA_UNASSIGNED_HOLDINGS
BBABE
CZZ
ID FETCH-LOGICAL-e1693-e5372aa7bfa90644962aadee0fa4a8b3ba79afce534ce6a3e9db55d4ab65fbf03
ISBN 9780323851596
0323851592
ISSN 1570-7946
IngestDate Sun Oct 19 01:38:55 EDT 2025
IsPeerReviewed false
IsScholarly false
Keywords superstructure optimization
convex discrete analysis
process intensification
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-e1693-e5372aa7bfa90644962aadee0fa4a8b3ba79afce534ce6a3e9db55d4ab65fbf03
PageCount 6
ParticipantIDs elsevier_sciencedirect_doi_10_1016_B978_0_323_85159_6_50213_X
PublicationCentury 2000
PublicationDate 2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationTitle Computer Aided Chemical Engineering
PublicationYear 2022
SSID ssib049088477
ssib019619890
ssib049006584
ssib045323371
Score 1.7091403
Snippet This manuscript introduces a Logic-based Discrete-Steepest Descent Algorithm (LD- SDA) to tackle problems arising from process superstructure optimization....
SourceID elsevier
SourceType Publisher
StartPage 1279
SubjectTerms convex discrete analysis
process intensification
superstructure optimization
Title Process Superstructure Optimization through Discrete Steepest Descent Optimization: a GDP Analysis and Applications in Process Intensification
URI https://dx.doi.org/10.1016/B978-0-323-85159-6.50213-X
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELa2hQPiAgLEWz5wq1zycB5G4rDbLUWiKhUUlFtkr20pUklXfawqfgR_kb_C2LEdp4IDQlyiTWLHsWd2_MWe-QahV2Umq0yzhHAtOaErpklNVymBmUrXKVVa2WQwXw-ro6O6adjxbPbTx8JsTqu-r6-v2fq_ihqugbBN6OxfiDs8FC7AbxA6HEHscLyBiKdrrwPZgEvSsDPvpFm79XQAEe1g-AC37M_Br31nfzcsuG5MgpUxAD047XRmW32R2s31tB-rzkPVT9DauVTfyWfey7PN8PzDq-4ilBne08UngN1aG_xpOGzNTsZHMGDfXGRoSCG07MC0AbY3HmlqDbMYGEnLQTUpPkRtHyyPR54VsycwX0895n3DznVfu3vx4keWRYsf_hs4yQF1GFRWxma8Soihzo_t_ECN6gx1mg05bNykb2bp304ow9rGwvEQZzmxTZFytwBwlJNmnEaDc-Ni8lK2XLOFtqoKzPCt-d7y4IM3eGD9jMtaMJi0gGoRPyFlA0KMzmtAEzZhkO-h9UBwjWWOUSo07ll20_L1n7sQwbAIWp3cQ3dNuA02cTDQvftopvoH6IcTE57qB44Fjp1-YK8f2OsHdvoxKf4Gcwzagb12YNAOHGsH7nrsm72hHQ_Rl3f7J3vvicscQpQhFyKqyKuM80pozgBzU1bCmVQq0ZzyWuSCV4zrFRSjK1XyXDEpikJSLspCC53kj9B2f9arxwhLwRinVBUsgWNNmVSC5krnShQlS8QT9NaPXutA6wBGW1Ch1vtQmtFvkxZGv7Wj35atHf22efqP9Z-hO-Mf4znaBomoF-j2anPZXZy_dAr3CxIqti4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Computer+Aided+Chemical+Engineering&rft.au=Bernal%2C+David+E.&rft.au=Ovalle%2C+Daniel&rft.au=Li%C3%B1%C3%A1n%2C+David+A.&rft.au=Ricardez-Sandoval%2C+Luis+A.&rft.atitle=Process+Superstructure+Optimization+through+Discrete+Steepest+Descent+Optimization%3A+a+GDP+Analysis+and+Applications+in+Process+Intensification&rft.date=2022-01-01&rft.isbn=9780323851596&rft.issn=1570-7946&rft.volume=49&rft.spage=1279&rft.epage=1284&rft_id=info:doi/10.1016%2FB978-0-323-85159-6.50213-X&rft.externalDocID=B978032385159650213X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-7946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-7946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-7946&client=summon