Exponentially-improved asymptotics for q-difference equations: 2ϕ0 and qPI
Usually when solving differential or difference equations via series solutions one encounters divergent series in which the coefficients grow like a factorial. Surprisingly, in the q-world the nth coefficient is often of the size q−12n(n−1), in which q∈(0,1) is fixed. Hence, the divergence is much s...
Gespeichert in:
| Veröffentlicht in: | Indagationes mathematicae Jg. 36; H. 6; S. 1555 - 1571 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.11.2025
|
| Schlagworte: | |
| ISSN: | 0019-3577 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Usually when solving differential or difference equations via series solutions one encounters divergent series in which the coefficients grow like a factorial. Surprisingly, in the q-world the nth coefficient is often of the size q−12n(n−1), in which q∈(0,1) is fixed. Hence, the divergence is much stronger, and one has to introduce alternative Borel and Laplace transforms to make sense of these formal series. We will discuss exponentially-improved asymptotics for the basic hypergeometric function 2ϕ0 and for solutions of the q-difference first Painlevé equation qPI. These are optimal truncated expansions, and re-expansions in terms of new q-hyperterminant functions. The re-expansions do incorporate the Stokes phenomena. |
|---|---|
| AbstractList | Usually when solving differential or difference equations via series solutions one encounters divergent series in which the coefficients grow like a factorial. Surprisingly, in the q-world the nth coefficient is often of the size q−12n(n−1), in which q∈(0,1) is fixed. Hence, the divergence is much stronger, and one has to introduce alternative Borel and Laplace transforms to make sense of these formal series. We will discuss exponentially-improved asymptotics for the basic hypergeometric function 2ϕ0 and for solutions of the q-difference first Painlevé equation qPI. These are optimal truncated expansions, and re-expansions in terms of new q-hyperterminant functions. The re-expansions do incorporate the Stokes phenomena. |
| Author | Olde Daalhuis, Adri Joshi, Nalini |
| Author_xml | – sequence: 1 givenname: Nalini orcidid: 0000-0001-7504-4444 surname: Joshi fullname: Joshi, Nalini email: nalini.joshi@sydney.edu.au organization: School of Mathematics and Statistics F07, The University of Sydney, New South Wales 2006, Australia – sequence: 2 givenname: Adri orcidid: 0000-0001-7525-4935 surname: Olde Daalhuis fullname: Olde Daalhuis, Adri email: a.oldedaalhuis@ed.ac.uk organization: School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK |
| BookMark | eNotkEtOwzAURT0oEm1hBUy8gYRnO4kbJAaoKlBRCQYwtvx5Ro5aJ41DRRfCutgSKTC6uoP70ZmRSWwjEnLFIGfAqusmD9Hp95wDL3PgOQCfkCkAqzNRSnlOZik1o5XAqyl5Wn12Yz4OQW-3xyzsur49oKM6HXfd0A7BJurbnu4zF7zHHqNFivsPPYQ2phvKv7-A6ujo_mV9Qc683ia8_Nc5ebtfvS4fs83zw3p5t8mQVVBknguJoq48k8x4ZripF7iAQhg0ri6tKAuU0laCLQy3hdDgjfMgnC9lZUGIObn968Vx5BCwV8mG0zEXerSDcm1QDNSJhmrULw11oqGAq5GG-AGW71of |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s) |
| Copyright_xml | – notice: 2025 The Author(s) |
| DBID | 6I. AAFTH |
| DOI | 10.1016/j.indag.2025.02.002 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EndPage | 1571 |
| ExternalDocumentID | S0019357725000084 |
| GroupedDBID | --K --M --Z .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 6OB 7-5 71M 8P~ 9DU 9JN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABAOU ABMAC ABWVN ABXDB ACDAQ ACGFS ACLOT ACRLP ACRPL ADBBV ADEZE ADIYS ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AEXQZ AFJKZ AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIIUN AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE IXB J1W KOM L7B M25 M41 MHUIS MO0 N9A O-L O9- OAUVE OHT OK1 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SES SEW SPC SPCBC SSW SSZ T5K UPT VH1 WUQ ~G- ~HD |
| ID | FETCH-LOGICAL-e1604-f237e396f171bf1b2b98e8043bebd95c354e77c6318b2c43a0fbdf03df576c033 |
| ISSN | 0019-3577 |
| IngestDate | Sat Nov 29 17:08:50 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Asymptotic expansions 39A13 Basic hypergeometric functions q-difference equations Hyperterminant 33D15 34M30 34M40 Stokes phenomenon |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-e1604-f237e396f171bf1b2b98e8043bebd95c354e77c6318b2c43a0fbdf03df576c033 |
| ORCID | 0000-0001-7525-4935 0000-0001-7504-4444 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.indag.2025.02.002 |
| PageCount | 17 |
| ParticipantIDs | elsevier_sciencedirect_doi_10_1016_j_indag_2025_02_002 |
| PublicationCentury | 2000 |
| PublicationDate | November 2025 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: November 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Indagationes mathematicae |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Zhang (b13) 2000; 331 Zhang (b14) 2002 Mitschi, Sauzin (b7) 2016; vol. 2153 (b1) 2024 Nishioka (b8) 2010; 79 Adachi (b2) 2019; 15 Belkić (b3) 2019; 57 Tahara (b12) 2017; 67 Bonelli, Grassi, Tanzini (b5) 2019; 109 Sakai (b11) 2001; 220 Olde Daalhuis (b10) 1998; 89 Berry (b4) 1989; 422 Joshi (b6) 2015; 134 Olde Daalhuis (b9) 1994; 186 |
| References_xml | – volume: 89 start-page: 87 year: 1998 end-page: 95 ident: b10 article-title: Hyperterminants. II publication-title: J. Comput. Appl. Math. – volume: 67 start-page: 1865 year: 2017 end-page: 1903 ident: b12 article-title: -analogues of Laplace and Borel transforms by means of publication-title: Ann. Inst. Fourier (Grenoble) – start-page: 309 year: 2002 end-page: 329 ident: b14 article-title: Une sommation discrète pour des équations aux publication-title: Differential Equations and the Stokes Phenomenon – volume: vol. 2153 start-page: xxi+298 year: 2016 ident: b7 article-title: Divergent series, summability and resurgence. I publication-title: Lecture Notes in Mathematics – volume: 109 start-page: 1961 year: 2019 end-page: 2001 ident: b5 article-title: Quantum curves and publication-title: Lett. Math. Phys. – volume: 422 start-page: 7 year: 1989 end-page: 21 ident: b4 article-title: Uniform asymptotic smoothing of Stokes’s discontinuities publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. – volume: 57 start-page: 59 year: 2019 end-page: 106 ident: b3 article-title: All the trinomial roots, their powers and logarithms from the Lambert series, Bell polynomials and Fox–Wright function: illustration for genome multiplicity in survival of irradiated cells publication-title: J. Math. Chem. – volume: 134 start-page: 233 year: 2015 end-page: 251 ident: b6 article-title: Quicksilver solutions of a publication-title: Stud. Appl. Math. – volume: 79 start-page: 1 year: 2010 end-page: 12 ident: b8 article-title: Transcendence of solutions of publication-title: Aequationes Math. – volume: 15 year: 2019 ident: b2 article-title: The publication-title: SIGMA Symmetry Integrability Geom. Methods Appl. – volume: 331 start-page: 31 year: 2000 end-page: 34 ident: b13 article-title: Transformations de publication-title: C. R. Acad. Sci. Paris SÉR. I Math. – volume: 220 start-page: 165 year: 2001 end-page: 229 ident: b11 article-title: Rational surfaces associated with affine root systems and geometry of the Painlevé equations publication-title: Comm. Math. Phys. – volume: 186 start-page: 896 year: 1994 end-page: 913 ident: b9 article-title: Asymptotic expansions for publication-title: J. Math. Anal. Appl. – year: 2024 ident: b1 article-title: NIST Digital Library of Mathematical Functions |
| SSID | ssj0017026 |
| Score | 2.3584938 |
| Snippet | Usually when solving differential or difference equations via series solutions one encounters divergent series in which the coefficients grow like a factorial.... |
| SourceID | elsevier |
| SourceType | Publisher |
| StartPage | 1555 |
| SubjectTerms | Asymptotic expansions Basic hypergeometric functions Hyperterminant q-difference equations Stokes phenomenon |
| Title | Exponentially-improved asymptotics for q-difference equations: 2ϕ0 and qPI |
| URI | https://dx.doi.org/10.1016/j.indag.2025.02.002 |
| Volume | 36 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0019-3577 databaseCode: AIEXJ dateStart: 20211207 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017026 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLag5QAHxCp25UBPyJXjJU64VdVUTIGqEgXNLbIdu51qmlkyRdMfwu_iL_HseDKRhgMgcYkiK8vT-5znzy9vQeittSkxlUixc9Zizq3GSnIOxpAw7mwuXMjj_vZJnpzko1FxGtMVm9BOQNZ1vloVs_8KNYwB2D519i_g7h4KA3AOoMMRYIfjHwE_WM2mtY8BUpPJDR4HpwGwStXcXM2W01CV2YcWzvG6Nwp82XbeVvwO8XF07_BorxAk_FeYnw77_HUIO_jzcKlt3l11JV9VNz2Op01oEwxm2-dcbny4lYUZpiYX17H_cbUY9z0OVMTUu84NtpUK05rWtMBMxJ4s0bS2tU3iFOrbSWAxorfmpqLtw7Jlz1vXwuW-90-c73th2gqrdLN8dUGFX7wIXgIqAhPmt9EulaIAW7d7MByMjru_S5KENnydyOtqVCHub-tVPZrSox5nD9D9uGdIDlqsH6Jbtn6E7n3utN88Rh9_j3rSQz0B1JM-6kmH-vuE_vxBEsA7AbyfoK9Hg7PDDzj2ycA2zQjHjjJpWZG5VKbapZrqIrc54UxbXRXCMMGtlCYD862p4UwRpytHWOVgs2kIY0_RTg0yPkMJ0EEtlMuYqThXKddOO6Yyk2dGmorkz1G21kUZKVpLvUpArFxHDF6WQYmlV2JJaAlKfPGvN75Edzdz8BXaWS6u7Wt0x3xfjpvFm4jsLyDOYrw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exponentially-improved+asymptotics+for+q-difference+equations%3A+2%CF%950+and+qPI&rft.jtitle=Indagationes+mathematicae&rft.au=Joshi%2C+Nalini&rft.au=Olde+Daalhuis%2C+Adri&rft.date=2025-11-01&rft.pub=Elsevier+B.V&rft.issn=0019-3577&rft.volume=36&rft.issue=6&rft.spage=1555&rft.epage=1571&rft_id=info:doi/10.1016%2Fj.indag.2025.02.002&rft.externalDocID=S0019357725000084 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-3577&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-3577&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-3577&client=summon |