Exponentially-improved asymptotics for q-difference equations: 2ϕ0 and qPI

Usually when solving differential or difference equations via series solutions one encounters divergent series in which the coefficients grow like a factorial. Surprisingly, in the q-world the nth coefficient is often of the size q−12n(n−1), in which q∈(0,1) is fixed. Hence, the divergence is much s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indagationes mathematicae Jg. 36; H. 6; S. 1555 - 1571
Hauptverfasser: Joshi, Nalini, Olde Daalhuis, Adri
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.11.2025
Schlagworte:
ISSN:0019-3577
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Usually when solving differential or difference equations via series solutions one encounters divergent series in which the coefficients grow like a factorial. Surprisingly, in the q-world the nth coefficient is often of the size q−12n(n−1), in which q∈(0,1) is fixed. Hence, the divergence is much stronger, and one has to introduce alternative Borel and Laplace transforms to make sense of these formal series. We will discuss exponentially-improved asymptotics for the basic hypergeometric function 2ϕ0 and for solutions of the q-difference first Painlevé equation qPI. These are optimal truncated expansions, and re-expansions in terms of new q-hyperterminant functions. The re-expansions do incorporate the Stokes phenomena.
AbstractList Usually when solving differential or difference equations via series solutions one encounters divergent series in which the coefficients grow like a factorial. Surprisingly, in the q-world the nth coefficient is often of the size q−12n(n−1), in which q∈(0,1) is fixed. Hence, the divergence is much stronger, and one has to introduce alternative Borel and Laplace transforms to make sense of these formal series. We will discuss exponentially-improved asymptotics for the basic hypergeometric function 2ϕ0 and for solutions of the q-difference first Painlevé equation qPI. These are optimal truncated expansions, and re-expansions in terms of new q-hyperterminant functions. The re-expansions do incorporate the Stokes phenomena.
Author Olde Daalhuis, Adri
Joshi, Nalini
Author_xml – sequence: 1
  givenname: Nalini
  orcidid: 0000-0001-7504-4444
  surname: Joshi
  fullname: Joshi, Nalini
  email: nalini.joshi@sydney.edu.au
  organization: School of Mathematics and Statistics F07, The University of Sydney, New South Wales 2006, Australia
– sequence: 2
  givenname: Adri
  orcidid: 0000-0001-7525-4935
  surname: Olde Daalhuis
  fullname: Olde Daalhuis, Adri
  email: a.oldedaalhuis@ed.ac.uk
  organization: School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
BookMark eNotkEtOwzAURT0oEm1hBUy8gYRnO4kbJAaoKlBRCQYwtvx5Ro5aJ41DRRfCutgSKTC6uoP70ZmRSWwjEnLFIGfAqusmD9Hp95wDL3PgOQCfkCkAqzNRSnlOZik1o5XAqyl5Wn12Yz4OQW-3xyzsur49oKM6HXfd0A7BJurbnu4zF7zHHqNFivsPPYQ2phvKv7-A6ujo_mV9Qc683ia8_Nc5ebtfvS4fs83zw3p5t8mQVVBknguJoq48k8x4ZripF7iAQhg0ri6tKAuU0laCLQy3hdDgjfMgnC9lZUGIObn968Vx5BCwV8mG0zEXerSDcm1QDNSJhmrULw11oqGAq5GG-AGW71of
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
DOI 10.1016/j.indag.2025.02.002
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EndPage 1571
ExternalDocumentID S0019357725000084
GroupedDBID --K
--M
--Z
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
6OB
7-5
71M
8P~
9DU
9JN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABAOU
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACRLP
ACRPL
ADBBV
ADEZE
ADIYS
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AEXQZ
AFJKZ
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIIUN
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
L7B
M25
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
UPT
VH1
WUQ
~G-
~HD
ID FETCH-LOGICAL-e1604-f237e396f171bf1b2b98e8043bebd95c354e77c6318b2c43a0fbdf03df576c033
ISSN 0019-3577
IngestDate Sat Nov 29 17:08:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Asymptotic expansions
39A13
Basic hypergeometric functions
q-difference equations
Hyperterminant
33D15
34M30
34M40
Stokes phenomenon
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-e1604-f237e396f171bf1b2b98e8043bebd95c354e77c6318b2c43a0fbdf03df576c033
ORCID 0000-0001-7525-4935
0000-0001-7504-4444
OpenAccessLink https://dx.doi.org/10.1016/j.indag.2025.02.002
PageCount 17
ParticipantIDs elsevier_sciencedirect_doi_10_1016_j_indag_2025_02_002
PublicationCentury 2000
PublicationDate November 2025
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: November 2025
PublicationDecade 2020
PublicationTitle Indagationes mathematicae
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang (b13) 2000; 331
Zhang (b14) 2002
Mitschi, Sauzin (b7) 2016; vol. 2153
(b1) 2024
Nishioka (b8) 2010; 79
Adachi (b2) 2019; 15
Belkić (b3) 2019; 57
Tahara (b12) 2017; 67
Bonelli, Grassi, Tanzini (b5) 2019; 109
Sakai (b11) 2001; 220
Olde Daalhuis (b10) 1998; 89
Berry (b4) 1989; 422
Joshi (b6) 2015; 134
Olde Daalhuis (b9) 1994; 186
References_xml – volume: 89
  start-page: 87
  year: 1998
  end-page: 95
  ident: b10
  article-title: Hyperterminants. II
  publication-title: J. Comput. Appl. Math.
– volume: 67
  start-page: 1865
  year: 2017
  end-page: 1903
  ident: b12
  article-title: -analogues of Laplace and Borel transforms by means of
  publication-title: Ann. Inst. Fourier (Grenoble)
– start-page: 309
  year: 2002
  end-page: 329
  ident: b14
  article-title: Une sommation discrète pour des équations aux
  publication-title: Differential Equations and the Stokes Phenomenon
– volume: vol. 2153
  start-page: xxi+298
  year: 2016
  ident: b7
  article-title: Divergent series, summability and resurgence. I
  publication-title: Lecture Notes in Mathematics
– volume: 109
  start-page: 1961
  year: 2019
  end-page: 2001
  ident: b5
  article-title: Quantum curves and
  publication-title: Lett. Math. Phys.
– volume: 422
  start-page: 7
  year: 1989
  end-page: 21
  ident: b4
  article-title: Uniform asymptotic smoothing of Stokes’s discontinuities
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
– volume: 57
  start-page: 59
  year: 2019
  end-page: 106
  ident: b3
  article-title: All the trinomial roots, their powers and logarithms from the Lambert series, Bell polynomials and Fox–Wright function: illustration for genome multiplicity in survival of irradiated cells
  publication-title: J. Math. Chem.
– volume: 134
  start-page: 233
  year: 2015
  end-page: 251
  ident: b6
  article-title: Quicksilver solutions of a
  publication-title: Stud. Appl. Math.
– volume: 79
  start-page: 1
  year: 2010
  end-page: 12
  ident: b8
  article-title: Transcendence of solutions of
  publication-title: Aequationes Math.
– volume: 15
  year: 2019
  ident: b2
  article-title: The
  publication-title: SIGMA Symmetry Integrability Geom. Methods Appl.
– volume: 331
  start-page: 31
  year: 2000
  end-page: 34
  ident: b13
  article-title: Transformations de
  publication-title: C. R. Acad. Sci. Paris SÉR. I Math.
– volume: 220
  start-page: 165
  year: 2001
  end-page: 229
  ident: b11
  article-title: Rational surfaces associated with affine root systems and geometry of the Painlevé equations
  publication-title: Comm. Math. Phys.
– volume: 186
  start-page: 896
  year: 1994
  end-page: 913
  ident: b9
  article-title: Asymptotic expansions for
  publication-title: J. Math. Anal. Appl.
– year: 2024
  ident: b1
  article-title: NIST Digital Library of Mathematical Functions
SSID ssj0017026
Score 2.3584938
Snippet Usually when solving differential or difference equations via series solutions one encounters divergent series in which the coefficients grow like a factorial....
SourceID elsevier
SourceType Publisher
StartPage 1555
SubjectTerms Asymptotic expansions
Basic hypergeometric functions
Hyperterminant
q-difference equations
Stokes phenomenon
Title Exponentially-improved asymptotics for q-difference equations: 2ϕ0 and qPI
URI https://dx.doi.org/10.1016/j.indag.2025.02.002
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0019-3577
  databaseCode: AIEXJ
  dateStart: 20211207
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017026
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLag5QAHxCp25UBPyJXjJU64VdVUTIGqEgXNLbIdu51qmlkyRdMfwu_iL_HseDKRhgMgcYkiK8vT-5znzy9vQeittSkxlUixc9Zizq3GSnIOxpAw7mwuXMjj_vZJnpzko1FxGtMVm9BOQNZ1vloVs_8KNYwB2D519i_g7h4KA3AOoMMRYIfjHwE_WM2mtY8BUpPJDR4HpwGwStXcXM2W01CV2YcWzvG6Nwp82XbeVvwO8XF07_BorxAk_FeYnw77_HUIO_jzcKlt3l11JV9VNz2Op01oEwxm2-dcbny4lYUZpiYX17H_cbUY9z0OVMTUu84NtpUK05rWtMBMxJ4s0bS2tU3iFOrbSWAxorfmpqLtw7Jlz1vXwuW-90-c73th2gqrdLN8dUGFX7wIXgIqAhPmt9EulaIAW7d7MByMjru_S5KENnydyOtqVCHub-tVPZrSox5nD9D9uGdIDlqsH6Jbtn6E7n3utN88Rh9_j3rSQz0B1JM-6kmH-vuE_vxBEsA7AbyfoK9Hg7PDDzj2ycA2zQjHjjJpWZG5VKbapZrqIrc54UxbXRXCMMGtlCYD862p4UwRpytHWOVgs2kIY0_RTg0yPkMJ0EEtlMuYqThXKddOO6Yyk2dGmorkz1G21kUZKVpLvUpArFxHDF6WQYmlV2JJaAlKfPGvN75Edzdz8BXaWS6u7Wt0x3xfjpvFm4jsLyDOYrw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exponentially-improved+asymptotics+for+q-difference+equations%3A+2%CF%950+and+qPI&rft.jtitle=Indagationes+mathematicae&rft.au=Joshi%2C+Nalini&rft.au=Olde+Daalhuis%2C+Adri&rft.date=2025-11-01&rft.pub=Elsevier+B.V&rft.issn=0019-3577&rft.volume=36&rft.issue=6&rft.spage=1555&rft.epage=1571&rft_id=info:doi/10.1016%2Fj.indag.2025.02.002&rft.externalDocID=S0019357725000084
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-3577&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-3577&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-3577&client=summon