Quantifying uncertainty in NMR T 2 spectra using Monte Carlo inversion

Relaxation and diffusion data are often analyzed using a Laplace inversion algorithm that incorporates regularization. Regularization is used because Laplace inversion with finite and noisy data is an ill-conditioned problem for which many solutions exist for a given data set. This paper reports a d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance (1997) Jg. 196; H. 1; S. 54 - 60
Hauptverfasser: Prange, Michael, Song, Yi-Qiao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 2009
Schlagworte:
ISSN:1090-7807, 1096-0856
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Relaxation and diffusion data are often analyzed using a Laplace inversion algorithm that incorporates regularization. Regularization is used because Laplace inversion with finite and noisy data is an ill-conditioned problem for which many solutions exist for a given data set. This paper reports a different approach. Instead of finding a “best” solution by some ad hoc criterion, we developed an efficient Monte Carlo algorithm that generates thousands of probable solutions from which the statistical properties of the solution can be analyzed. We find that although all of the individual solutions are spiky, the mean solution spectrum is smooth and similar to the regularized solution. From the Monte Carlo solutions we obtain probability distributions for quantities derived from the spectrum, such as porosity and bound fluid. This ability to characterize the uncertainty of such quantities is novel.
AbstractList Relaxation and diffusion data are often analyzed using a Laplace inversion algorithm that incorporates regularization. Regularization is used because Laplace inversion with finite and noisy data is an ill-conditioned problem for which many solutions exist for a given data set. This paper reports a different approach. Instead of finding a “best” solution by some ad hoc criterion, we developed an efficient Monte Carlo algorithm that generates thousands of probable solutions from which the statistical properties of the solution can be analyzed. We find that although all of the individual solutions are spiky, the mean solution spectrum is smooth and similar to the regularized solution. From the Monte Carlo solutions we obtain probability distributions for quantities derived from the spectrum, such as porosity and bound fluid. This ability to characterize the uncertainty of such quantities is novel.
Author Prange, Michael
Song, Yi-Qiao
Author_xml – sequence: 1
  givenname: Michael
  surname: Prange
  fullname: Prange, Michael
  email: prange@slb.com
– sequence: 2
  givenname: Yi-Qiao
  surname: Song
  fullname: Song, Yi-Qiao
BookMark eNotkFFLwzAUhYNMcJv-AN_yB1rvbdOkxScZzgmbosznkC23kjJTSbrB_r2p-nTuPRzu_TgzNvG9J8ZuEXIElHdd3n2FvACo054nuWBThEZmUFdy8jtDpmpQV2wWYweAWCmYsuXb0fjBtWfnP_nR7ykMxvnhzJ3nL5t3vuUFj9-0H4LhxziGNr0fiC9MOPQpdKIQXe-v2WVrDpFu_nXOPpaP28UqW78-PS8e1hlhqYaMih2VKCSYplSW2h0WtqglNBbAKGHKpqotorBN4mtVRWInFIqyQStrK0U5Z_d_dyk9OTkKOu4dJWzrQoLUtncaQY-V6E6nSvRYyWglKX8AJ_BWuA
ContentType Journal Article
Copyright 2008 Elsevier Inc.
Copyright_xml – notice: 2008 Elsevier Inc.
DOI 10.1016/j.jmr.2008.10.008
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1096-0856
EndPage 60
ExternalDocumentID S1090780708003340
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABBQC
ABFNM
ABGSF
ABJNI
ABLJU
ABLVK
ABMAC
ABMZM
ABNEU
ABUDA
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADFGL
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGRDE
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJRQY
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
D-I
DM4
DOVZS
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LG5
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSK
SSQ
SSU
SSZ
T5K
UPT
UQL
XPP
YQT
ZA5
ZCG
ZGI
ZXP
~02
~G-
ID FETCH-LOGICAL-e137t-e2be31460a937defb12d28609d00a74a3958d114d9011f75e4b4714391d68d643
ISICitedReferencesCount 94
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000262681100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1090-7807
IngestDate Fri Feb 23 02:28:44 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Relaxation
Uncertainty
Monte Carlo
Diffusion
Laplace inversion
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-e137t-e2be31460a937defb12d28609d00a74a3958d114d9011f75e4b4714391d68d643
PageCount 7
ParticipantIDs elsevier_sciencedirect_doi_10_1016_j_jmr_2008_10_008
PublicationCentury 2000
PublicationDate 2009
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – year: 2009
  text: 2009
PublicationDecade 2000
PublicationTitle Journal of magnetic resonance (1997)
PublicationYear 2009
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References G. Rodriguez-Yam, R. Davis, L. Scharf, Efficient Gibbs sampling of truncated multivariate normal with application to constrained linear regression, Tech. Rep., Colorado State University, 2004.
Lawson, Hanson (bib5) 1974
Sivia, Skilling (bib7) 2006
Kleinberg (bib1) 1996; vol. 8
Tikhonov, Arsenin (bib2) 1977
Gull (bib4) 1989
Philippe, Robert (bib12) 2003; 13
Robert, Casella (bib11) 2004
Devroye (bib8) 1986
E. Kermidas, S. Kaufman (Eds.), Efficient simulation from the multivariate normal and Student-t distributions subject to linear constraints, Computing Science and Statistics. in: Proceedings of the 23rd Symposium in the Interface, Interface Foundation of North America, Fairfax, VA, 1991.
Skilling (bib3) 1989
Parker, Song (bib6) 2005; 174
References_xml – reference: E. Kermidas, S. Kaufman (Eds.), Efficient simulation from the multivariate normal and Student-t distributions subject to linear constraints, Computing Science and Statistics. in: Proceedings of the 23rd Symposium in the Interface, Interface Foundation of North America, Fairfax, VA, 1991.
– volume: 174
  start-page: 314
  year: 2005
  end-page: 324
  ident: bib6
  article-title: Assigning uncertainties in the inversion of NMR relaxation data
  publication-title: Journal of Magnetic Resonance
– volume: vol. 8
  start-page: 4960
  year: 1996
  end-page: 4969
  ident: bib1
  article-title: Well logging
  publication-title: Encyclopedia of Nuclear Magnetic Resonance
– start-page: 53
  year: 1989
  end-page: 71
  ident: bib4
  article-title: Developments in maximum entropy data analysis
  publication-title: Maximum Entropy and Bayesian Methods
– year: 1977
  ident: bib2
  article-title: Solution of Ill-posed Problems
– reference: G. Rodriguez-Yam, R. Davis, L. Scharf, Efficient Gibbs sampling of truncated multivariate normal with application to constrained linear regression, Tech. Rep., Colorado State University, 2004.
– volume: 13
  start-page: 179
  year: 2003
  end-page: 186
  ident: bib12
  article-title: Perfect simulation of positive gaussian distributions
  publication-title: Statistics and Computing
– year: 1986
  ident: bib8
  article-title: Non-Uniform Random Variate Generation
– year: 2006
  ident: bib7
  article-title: Data Analysis: A Bayesian Tutorial
– year: 2004
  ident: bib11
  article-title: Monte Carlo Statistical Methods
– year: 1974
  ident: bib5
  article-title: Solving Least Squares Problems
– start-page: 45
  year: 1989
  end-page: 52
  ident: bib3
  article-title: Classic maximum entropy
  publication-title: Maximum Entropy and Bayesian Methods
SSID ssj0011570
Score 2.2310886
Snippet Relaxation and diffusion data are often analyzed using a Laplace inversion algorithm that incorporates regularization. Regularization is used because Laplace...
SourceID elsevier
SourceType Publisher
StartPage 54
SubjectTerms Diffusion
Laplace inversion
Monte Carlo
Relaxation
Uncertainty
Title Quantifying uncertainty in NMR T 2 spectra using Monte Carlo inversion
URI https://dx.doi.org/10.1016/j.jmr.2008.10.008
Volume 196
WOSCitedRecordID wos000262681100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-0856
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011570
  issn: 1090-7807
  databaseCode: AIEXJ
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swELZY2bS9TIwN7RfID3urjJzYaexHhEADiQq2TipPlVO7UytIUdoi_vzd2U5ImZA2JF6iyGrcNN_1_OX83R0h37Tk0soiZcaIgslxkTCtepyNgYwb4BucW-WbTeT9vhoO9XmU8i58O4G8LNXdnb55VqhhDMDG1Nn_gLuZFAbgHECHI8AOx38C_mJlUADk05dg0Qpb_kuf3tc_-9EddNOuT6-sTHflAwVnWKAKlR9Xc_jQbQigPUJar83v0oWyz8jh0StgpSet2yGF8wozFh6K8jGME_W_l1N2MTXztYjDvUdrkmDWNJoo7WS5Cs1r91091mPA5nprjjb0rl2zqOA2Qx3puACH_gJ_ufYQZZjtz66rIIH1ojx1v4416sKfeEd4Q8iGhZD8BdlM80yrDtk8ODkanjbbTEmWh3IV8RfU295eAPjgi1pspcVABlvkbUSBHgTI35ENV26T14d1x75t8srLeceL9-S4ZQS0ZQR0WlIwAjqgKY1GQL0RUG8E1BsBbYzgA_l1fDQ4_M5ixwzmEpEvmUsLJ2Dt4wZYp3WTIkltCn89bTk3uTRCZ8rCG7DFhONJnjlZADnB5GvbUxbI6Q7plPPSfSR0ohQWZwR3zo0shClwaquEUhnMNBGfiKwfxyiStUDCRgDYqNYOzkbwFEOr0wTr0KrPT7vsC3kTtvEw9vWVdJbVyu2Sl-Pb5XRR7UVY_wADIl_8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+uncertainty+in+NMR+T+2+spectra+using+Monte+Carlo+inversion&rft.jtitle=Journal+of+magnetic+resonance+%281997%29&rft.au=Prange%2C+Michael&rft.au=Song%2C+Yi-Qiao&rft.date=2009&rft.pub=Elsevier+Inc&rft.issn=1090-7807&rft.eissn=1096-0856&rft.volume=196&rft.issue=1&rft.spage=54&rft.epage=60&rft_id=info:doi/10.1016%2Fj.jmr.2008.10.008&rft.externalDocID=S1090780708003340
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1090-7807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1090-7807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1090-7807&client=summon