Solving SCS for bounded length strings in fewer than 2n steps

It is still not known whether a shortest common superstring (SCS) of n input strings can be found faster than in O⁎(2n) time (O⁎(⋅) suppresses polynomial factors of the input length). In this short note, we show that for any constant r, SCS for strings of length at most r can be solved in time O⁎(2(...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Information processing letters Ročník 114; číslo 8; s. 421 - 425
Hlavní autori: Golovnev, Alexander, Kulikov, Alexander S., Mihajlin, Ivan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.08.2014
Predmet:
ISSN:0020-0190, 1872-6119
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract It is still not known whether a shortest common superstring (SCS) of n input strings can be found faster than in O⁎(2n) time (O⁎(⋅) suppresses polynomial factors of the input length). In this short note, we show that for any constant r, SCS for strings of length at most r can be solved in time O⁎(2(1−c(r))n) where c(r)=(1+2r2)−1. For this, we introduce so-called hierarchical graphs that allow us to reduce SCS on strings of length at most r to the directed rural postman problem on a graph with at most k=(1−c(r))n weakly connected components. One can then use a recent O⁎(2k) time algorithm by Gutin, Wahlström, and Yeo. •We study the shortest common superstring problem on string of length r (r-SCS).•We introduce hierarchical graphs to reduce the r-SCS problem to the directed rural postman problem (DRPP).•We bound the number of weakly connected components in hierarchical graphs and call recent algorithm by Gutin et al.•The main result is a randomized 2n(1−Ω(r−2))-time algorithm for r-SCS.
AbstractList It is still not known whether a shortest common superstring (SCS) of n input strings can be found faster than in O⁎(2n) time (O⁎(⋅) suppresses polynomial factors of the input length). In this short note, we show that for any constant r, SCS for strings of length at most r can be solved in time O⁎(2(1−c(r))n) where c(r)=(1+2r2)−1. For this, we introduce so-called hierarchical graphs that allow us to reduce SCS on strings of length at most r to the directed rural postman problem on a graph with at most k=(1−c(r))n weakly connected components. One can then use a recent O⁎(2k) time algorithm by Gutin, Wahlström, and Yeo. •We study the shortest common superstring problem on string of length r (r-SCS).•We introduce hierarchical graphs to reduce the r-SCS problem to the directed rural postman problem (DRPP).•We bound the number of weakly connected components in hierarchical graphs and call recent algorithm by Gutin et al.•The main result is a randomized 2n(1−Ω(r−2))-time algorithm for r-SCS.
Author Golovnev, Alexander
Mihajlin, Ivan
Kulikov, Alexander S.
Author_xml – sequence: 1
  givenname: Alexander
  surname: Golovnev
  fullname: Golovnev, Alexander
  organization: New York University, United States
– sequence: 2
  givenname: Alexander S.
  surname: Kulikov
  fullname: Kulikov, Alexander S.
  organization: St. Petersburg Department of Steklov Institute of Mathematics, Russian Federation
– sequence: 3
  givenname: Ivan
  surname: Mihajlin
  fullname: Mihajlin, Ivan
  organization: St. Petersburg Academic University and St. Petersburg Department of Steklov Institute of Mathematics, Russian Federation
BookMark eNot0M1KAzEUBeAgFZxWH8BdXmDGe5N0fhAXUrQKBRfVdUgyN22GIVMmY319p-jqLA6cA9-SLeIQibF7hAIBy4euCKe-EICqAFkAqCuWYV2JvERsFiwDEJADNnDDlil1AFAqWWXsaT_05xAPfL_Zcz-M3A7fsaWW9xQP05GnaZzbxEPknn5o5NPRRC7iXNAp3bJrb_pEd_-5Yl-vL5-bt3z3sX3fPO9yQllNuRG1QAu1kFYILyrvKlsJUMo6WEsnXKvQSDLe1d6qVhmlSFl02EhXK7OWK_b4t0vzyTnQqJMLFB21YSQ36XYIGkFfJHSnZwl9kdAg9SwhfwGoP1Qu
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright_xml – notice: 2014 Elsevier B.V.
DOI 10.1016/j.ipl.2014.03.004
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-6119
EndPage 425
ExternalDocumentID S0020019014000416
GrantInformation_xml – fundername: President of Russian Federation
  grantid: NSh-3856.2014.1
– fundername: Russian Foundation for Basic Research
  grantid: 14-01-00545
  funderid: http://dx.doi.org/10.13039/501100002261
– fundername: Government of the Russian Federation
  grantid: 14.Z50.31.0030
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFSI
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M26
M41
MO0
MS~
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SME
SPC
SPCBC
SSV
SSZ
T5K
TN5
UQL
WH7
WUQ
XPP
ZMT
ZY4
~G-
ID FETCH-LOGICAL-e137t-a2821b0823b22f27fc7b72044bc053c2cd41a3eafc8fb4d4a44e4b1c193c84a53
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000336699200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0190
IngestDate Fri Feb 23 02:16:28 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Exponential-time algorithm
Traveling salesman problem
Algorithms
Shortest common superstring
NP-hard problem
Exact algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-e137t-a2821b0823b22f27fc7b72044bc053c2cd41a3eafc8fb4d4a44e4b1c193c84a53
PageCount 5
ParticipantIDs elsevier_sciencedirect_doi_10_1016_j_ipl_2014_03_004
PublicationCentury 2000
PublicationDate August 2014
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: August 2014
PublicationDecade 2010
PublicationTitle Information processing letters
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bax, Franklin (br0010) November 1996; 60
Golovnev, Kulikov, Mihajlin (br0120) 2013; vol. 8087
Kulikov, Kutzkov (br0190) 2009; 19
Mucha (br0210) 2013
Bellman (br0030) January 1962; 9
Karp (br0160) 1982; 1
Vassilevska (br0230) 2005; vol. 3618
Christofides, Campos, Corberan, Mota (br0080) 1986; vol. 26
Williams (br0240) 2005; 348
Gallant, Maier, Storer (br0110) 1980; 20
Björklund, Husfeldt, Kaski, Koivisto (br0050) 2010; 47
Cygan, Pilipczuk (br0090) 2013; vol. 7965
Schöning (br0220) 2002; 32
Dantsin, Wolpert (br0100) 2006; vol. 4121
Kohn, Gottlieb, Kohn (br0170) 1977
Björklund, Husfeldt, Koivisto (br0060) 2009; 39
Bodlaender, Cygan, Kratsch, Nederlof (br0070) 2013
Björklund, Husfeldt, Kaski, Koivisto (br0040) 2008; vol. 5125
Gutin, Wahlström, Yeo (br0130)
Koivisto (br0180) 2006; 98
Moser, Scheder (br0200) 2011
Hertli (br0150) Oct. 2011
Held, Karp (br0140) 1962; 10
Beigel, Eppstein (br0020) 2005; 54
References_xml – volume: vol. 26
  start-page: 155
  year: 1986
  end-page: 166
  ident: br0080
  article-title: An algorithm for the Rural Postman problem on a directed graph
  publication-title: Netflow at Pisa
– start-page: 277
  year: Oct. 2011
  end-page: 284
  ident: br0150
  article-title: 3-SAT faster and simpler – unique-SAT bounds for PPSZ hold in general
  publication-title: Foundations of Computer Science (FOCS)
– volume: 47
  start-page: 637
  year: 2010
  end-page: 654
  ident: br0050
  article-title: Trimmed Moebius inversion and graphs of bounded degree
  publication-title: Theory Comput. Syst.
– volume: 32
  start-page: 615
  year: 2002
  end-page: 623
  ident: br0220
  article-title: A probabilistic algorithm for
  publication-title: Algorithmica
– ident: br0130
  article-title: Parameterized rural postman and conjoining bipartite matching problems
– start-page: 958
  year: 2013
  end-page: 972
  ident: br0210
  article-title: Lyndon words and short superstrings
  publication-title: Proceedings of the Twenty-Fourth Annual ACM–SIAM Symposium on Discrete Algorithms, SODA'13
– volume: 9
  start-page: 61
  year: January 1962
  end-page: 63
  ident: br0030
  article-title: Dynamic programming treatment of the travelling salesman problem
  publication-title: J. ACM
– volume: 39
  start-page: 546
  year: 2009
  end-page: 563
  ident: br0060
  article-title: Set partitioning via inclusion–exclusion
  publication-title: SIAM J. Comput.
– volume: 19
  start-page: 155
  year: 2009
  end-page: 172
  ident: br0190
  article-title: New upper bounds for the problem of maximal satisfiability
  publication-title: Discrete Math. Appl.
– volume: 20
  start-page: 50
  year: 1980
  end-page: 58
  ident: br0110
  article-title: On finding minimal length superstrings
  publication-title: J. Comput. Syst. Sci.
– start-page: 196
  year: 2013
  end-page: 207
  ident: br0070
  article-title: Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth
  publication-title: Automata, Languages, and Programming
– start-page: 245
  year: 2011
  end-page: 252
  ident: br0200
  article-title: A full derandomization of Schöning's
  publication-title: Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, STOC'11
– start-page: 294
  year: 1977
  end-page: 300
  ident: br0170
  article-title: A generating function approach to the traveling salesman problem
  publication-title: ACN'77: Proceedings of the 1977 Annual Conference
– volume: vol. 3618
  start-page: 793
  year: 2005
  end-page: 800
  ident: br0230
  article-title: Explicit inapproximability bounds for the shortest superstring problem
  publication-title: Mathematical Foundations of Computer Science 2005
– volume: vol. 5125
  start-page: 198
  year: 2008
  end-page: 209
  ident: br0040
  article-title: The travelling salesman problem in bounded degree graphs
  publication-title: Automata, Languages and Programming
– volume: 10
  start-page: 196
  year: 1962
  end-page: 210
  ident: br0140
  article-title: A dynamic programming approach to sequencing problems
  publication-title: J. Soc. Ind. Appl. Math.
– volume: 1
  start-page: 49
  year: 1982
  end-page: 51
  ident: br0160
  article-title: Dynamic programming meets the principle of inclusion and exclusion
  publication-title: Oper. Res. Lett.
– volume: vol. 8087
  start-page: 480
  year: 2013
  end-page: 491
  ident: br0120
  article-title: Solving 3-superstring in
  publication-title: Mathematical Foundations of Computer Science 2013
– volume: vol. 7965
  start-page: 364
  year: 2013
  end-page: 375
  ident: br0090
  article-title: Faster exponential-time algorithms in graphs of bounded average degree
  publication-title: Automata, Languages, and Programming
– volume: 54
  start-page: 168
  year: 2005
  end-page: 204
  ident: br0020
  article-title: 3-coloring in time
  publication-title: J. Algorithms
– volume: 98
  start-page: 24
  year: 2006
  end-page: 28
  ident: br0180
  article-title: Optimal 2-constraint satisfaction via sum–product algorithms
  publication-title: Inf. Process. Lett.
– volume: 348
  start-page: 357
  year: 2005
  end-page: 365
  ident: br0240
  article-title: A new algorithm for optimal 2-constraint satisfaction and its implications
  publication-title: Theor. Comput. Sci.
– volume: 60
  start-page: 171
  year: November 1996
  end-page: 176
  ident: br0010
  article-title: A finite-difference sieve to count paths and cycles by length
  publication-title: Inf. Process. Lett.
– volume: vol. 4121
  start-page: 266
  year: 2006
  end-page: 276
  ident: br0100
  article-title: MAX-SAT for formulas with constant clause density can be solved faster than in
  publication-title: Proceedings of the 9th International Conference on Theory and Applications of Satisfiability Testing
SSID ssj0006437
Score 2.0703597
Snippet It is still not known whether a shortest common superstring (SCS) of n input strings can be found faster than in O⁎(2n) time (O⁎(⋅) suppresses polynomial...
SourceID elsevier
SourceType Publisher
StartPage 421
SubjectTerms Algorithms
Exact algorithm
Exponential-time algorithm
NP-hard problem
Shortest common superstring
Traveling salesman problem
Title Solving SCS for bounded length strings in fewer than 2n steps
URI https://dx.doi.org/10.1016/j.ipl.2014.03.004
Volume 114
WOSCitedRecordID wos000336699200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6119
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006437
  issn: 0020-0190
  databaseCode: AIEXJ
  dateStart: 19950113
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxoEL3wjGh3zgVqWaHSdOjtM0YAhNSB2ot8h2bJGucquuRPvz917spIFdAIlLVCVqmvr99Px7H788Qt4zWXOjUpdoaetEpHmZqFynSWnqLDOwQxddxfT7F3lxUSwW5dfJpO21MO1Kel_c3JSb_2pqOAfGRunsX5h7uCmcgM9gdDiC2eH4R4afr1ddkmB-Og-9mDg4CWgljkzBdvTdtpvU2fips9ghj7nzKfdwwW6ux1w1KpU6gGyCngDvu-oEQAMV_wjes_XwkGO1zL5AtGqu1r9em85ng5WbH2oZJ8aftxGnMQXBxNAAF_Nid7QxUSeALW9hGOjMBvdaSA7BanSSvf8NKtIItGLkTUUQT8eNWQSF9B2fH9IPy1mzwVISE-GltWK_wQ1th1iZRk6LUSW-aCy_Rw65zEpw6Icn52eLz8MejuXM0BwU_kNfD-86A3_7oRGNGVGTy8fkYYwp6EnAwhMysf4pedTP66DRfT8jPTQoQIOCbWmEBg3QoBEatPG0gwZFaFDuaQeN5-Tbh7PL009JHJ-RWJbKXaIgmmYaK6mac8elM1LjSCKhDXhew00tmEqtcqZwWtRCCWGFZgYovSmEytIX5MCvvX1JaJ7p45wbbm1phLOlUgri3IIxq4CxOveKiH4JqsjcAiOrwEhV30i4rGDlKly56jitYOWO_u1rr8mDPQrfkIPd9qd9S-6bdtdcb99FU94ClBtncw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+SCS+for+bounded+length+strings+in+fewer+than+2n+steps&rft.jtitle=Information+processing+letters&rft.au=Golovnev%2C+Alexander&rft.au=Kulikov%2C+Alexander+S.&rft.au=Mihajlin%2C+Ivan&rft.date=2014-08-01&rft.pub=Elsevier+B.V&rft.issn=0020-0190&rft.eissn=1872-6119&rft.volume=114&rft.issue=8&rft.spage=421&rft.epage=425&rft_id=info:doi/10.1016%2Fj.ipl.2014.03.004&rft.externalDocID=S0020019014000416
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0190&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0190&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0190&client=summon