Two function algebras defining functions in NCk boolean circuits

We describe the functions computed by boolean circuits in NCk by means of functions algebra for k≥1 in the spirit of implicit computational complexity. The whole hierarchy defines NC. In other words, we give a recursion-theoretic characterization of the complexity classes NCk for k≥1 without referen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information and computation Jg. 248; S. 82 - 103
Hauptverfasser: Bonfante, Guillaume, Kahle, Reinhard, Marion, Jean-Yves, Oitavem, Isabel
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.06.2016
Schlagworte:
ISSN:0890-5401, 1090-2651
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe the functions computed by boolean circuits in NCk by means of functions algebra for k≥1 in the spirit of implicit computational complexity. The whole hierarchy defines NC. In other words, we give a recursion-theoretic characterization of the complexity classes NCk for k≥1 without reference to a machine model, nor explicit bounds in the recursion schema. Actually, we give two equivalent descriptions of the classes NCk, k≥1. One is based on a tree structure à la Leivant, the other is based on words. This latter puts into light the role of computation of pointers in circuit complexity. We show that transducers are a key concept for pointer evaluation.
ISSN:0890-5401
1090-2651
DOI:10.1016/j.ic.2015.12.009