Surrogate Modeling for Superstructure Optimization with Generalized Disjunctive Programming

In this work, we propose an iterative framework to solve superstructure design problems, which includes surrogate models, with a custom implementation of the Logic-based Outer- Approximation algorithm (L-bOA). We build surrogate models (SM) using the machine learning software ALAMO exploiting its ca...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer Aided Chemical Engineering Ročník 49; s. 1267 - 1272
Hlavní autoři: Pedrozo, H.A., Reartes, S.B. Rodriguez, Vecchietti, A.R., Diaz, M.S., Grossmann, I.E.
Médium: Kapitola
Jazyk:angličtina
Vydáno: 2022
Témata:
ISBN:9780323851596, 0323851592
ISSN:1570-7946
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this work, we propose an iterative framework to solve superstructure design problems, which includes surrogate models, with a custom implementation of the Logic-based Outer- Approximation algorithm (L-bOA). We build surrogate models (SM) using the machine learning software ALAMO exploiting its capability for selecting low- complexity basis functions to accurately fit sample data. To improve and validate the SM, we apply the Error Maximization Sampling (EMS) strategy in the exploration step. In this step, we formulate mathematical problems that are solved through Derivative Free Optimization (DFO) techniques. The following step applies the L-bOA algorithm to solve the GDP synthesis problem. As several NLP subproblems are solved to determine the optimal solution in L-bOA in the exploitation step, the corresponding optimal points are added to the SM training set. In case that an NLP subproblem turns out to be infeasible, we solve the Euclidean Distance Minimization (EDM) problem to find the closest feasible point to the former infeasible point. In this way, the entire information from NLP subproblems is exploited. As original model output variables are required, we solve EDM problems using DFO strategies. The proposed methodology is applied to a methanol synthesis problem, which shows robustness and efficiency to determine the correct optimal scheme and errors less than 0.2% in operating variables.
AbstractList In this work, we propose an iterative framework to solve superstructure design problems, which includes surrogate models, with a custom implementation of the Logic-based Outer- Approximation algorithm (L-bOA). We build surrogate models (SM) using the machine learning software ALAMO exploiting its capability for selecting low- complexity basis functions to accurately fit sample data. To improve and validate the SM, we apply the Error Maximization Sampling (EMS) strategy in the exploration step. In this step, we formulate mathematical problems that are solved through Derivative Free Optimization (DFO) techniques. The following step applies the L-bOA algorithm to solve the GDP synthesis problem. As several NLP subproblems are solved to determine the optimal solution in L-bOA in the exploitation step, the corresponding optimal points are added to the SM training set. In case that an NLP subproblem turns out to be infeasible, we solve the Euclidean Distance Minimization (EDM) problem to find the closest feasible point to the former infeasible point. In this way, the entire information from NLP subproblems is exploited. As original model output variables are required, we solve EDM problems using DFO strategies. The proposed methodology is applied to a methanol synthesis problem, which shows robustness and efficiency to determine the correct optimal scheme and errors less than 0.2% in operating variables.
Author Grossmann, I.E.
Vecchietti, A.R.
Pedrozo, H.A.
Reartes, S.B. Rodriguez
Diaz, M.S.
Author_xml – sequence: 1
  givenname: H.A.
  surname: Pedrozo
  fullname: Pedrozo, H.A.
  organization: Planta Piloto de Ingeniería Química (PLAPIQUI CONICET-UNS), Camino La Carrindanga km. 7, Bahía Blanca, Argentina
– sequence: 2
  givenname: S.B. Rodriguez
  surname: Reartes
  fullname: Reartes, S.B. Rodriguez
  organization: Planta Piloto de Ingeniería Química (PLAPIQUI CONICET-UNS), Camino La Carrindanga km. 7, Bahía Blanca, Argentina
– sequence: 3
  givenname: A.R.
  surname: Vecchietti
  fullname: Vecchietti, A.R.
  organization: Institute of Design and Development (INGAR CONICET-UTN), Avellaneda, 3657, Santa Fe, Argentina
– sequence: 4
  givenname: M.S.
  surname: Diaz
  fullname: Diaz, M.S.
  email: sdiaz@plapiqui.edu.ar
  organization: Planta Piloto de Ingeniería Química (PLAPIQUI CONICET-UNS), Camino La Carrindanga km. 7, Bahía Blanca, Argentina
– sequence: 5
  givenname: I.E.
  surname: Grossmann
  fullname: Grossmann, I.E.
  organization: Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
BookMark eNotkFFPwjAURpuIiYj7D43vxXbd2vVRQdEEgwn65EPTtbdYAxvpOkz49Q706T6c5Hy55xqNmrYBhG4ZnTLKxN2DkhWhhOecVCUrFRHTkuaMEXGBsoHRgZyBGKExKyUlUhXiCmVdF2paKFpVhZRj9LnuY2w3JgF-bR1sQ7PBvo143e8hdin2NvUR8Gqfwi4cTQptg39C-sILaCCabTiCw_PQffeNTeEA-G2wRbPbDaIbdOnNtoPs_07Qx9Pj--yZLFeLl9n9kgDjLBGolPOuEHVemYIXtbHDI95xZ7mBHEBJzpURNOdOOO-FtdbTmgupQHqmKj5B8z8vDCOHAFF3NkBjwYUINmnXBs2oPnXTp26a6qGOPufRQp-7acF_AXdZZsA
ContentType Book Chapter
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DOI 10.1016/B978-0-323-85159-6.50211-6
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EndPage 1272
ExternalDocumentID B9780323851596502116
GroupedDBID 38.
AABBV
AAVWF
ALMA_UNASSIGNED_HOLDINGS
BBABE
CZZ
ID FETCH-LOGICAL-e131t-e89dfd46b28a434bac021fd3dc3ae2ee97339a6023d6dff6cccf0b3679e7f1983
ISBN 9780323851596
0323851592
ISSN 1570-7946
IngestDate Sun Oct 19 01:38:55 EDT 2025
IsPeerReviewed false
IsScholarly false
Keywords disjunctive programming
superstructure optimization
derivative free optimization
surrogate models
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-e131t-e89dfd46b28a434bac021fd3dc3ae2ee97339a6023d6dff6cccf0b3679e7f1983
PageCount 6
ParticipantIDs elsevier_sciencedirect_doi_10_1016_B978_0_323_85159_6_50211_6
PublicationCentury 2000
PublicationDate 2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationTitle Computer Aided Chemical Engineering
PublicationYear 2022
References Pedrozo, Reartes, Bernal, Vecchietti, Díaz, Grossmann (bb0030) 2021; 154
Pedrozo, Reartes, Vecchietti, Díaz, Grossmann (bb0035) 2021; 149
Powell (bb0025) 2009
Zhao, Grossmann, García-Muñoz, Stamatis (bb0055) 2021; 67
Bhosekar, Ierapetritou (bb0010) 2018; 108
fo.net
Pedrozo, H. A., Rodriguez Reartes, S., Diaz, M. S., Vecchietti, A. R., Grossmann, I. E. (2020), Coproduction of ethylene and propylene based on ethane and propane feedstocks, Computer Aided Chemical Engineering, 48, 907-912.
1.50152-X
Kim, Boukouvala (bb0020) 2020; 140
Chen, Grossmann (bb0015) 2019; 7
T. M. Ragonneau and Z. Zhang, PDFO: Cross-Platform Interfaces for Powell's Derivative-Free Optimization Solvers (Version 1.1), available at h
Wilson, Sahinidis (bb0050) 2017; 106
References_xml – volume: 149
  year: 2021
  ident: bb0035
  article-title: Optimal design of ethylene and propylene coproduction plants with generalized disjunctive programming and state equipment network models
  publication-title: Comp. & Chem. Eng.
– volume: 140
  year: 2020
  ident: bb0020
  article-title: Surrogate-based optimization for mixed-integer nonlinear problems
  publication-title: Comp. & Chem. Eng.
– year: 2009
  ident: bb0025
  article-title: The BOBYQA algorithm for bound constrained optimization without derivatives, Technical Report DAMTP 2009/NA06
– volume: 7
  start-page: 839
  year: 2019
  ident: bb0015
  article-title: Modern modeling paradigms using generalized disjunctive programming
  publication-title: Processes
– volume: 154
  year: 2021
  ident: bb0030
  article-title: Hybrid model generation for superstructure optimization with Generalized Disjunctive Programming
  publication-title: Comp. & Chem. Eng.
– reference: 1.50152-X
– reference: T. M. Ragonneau and Z. Zhang, PDFO: Cross-Platform Interfaces for Powell's Derivative-Free Optimization Solvers (Version 1.1), available at h
– volume: 106
  start-page: 785
  year: 2017
  end-page: 795
  ident: bb0050
  article-title: The ALAMO approach to machine learning
  publication-title: Comp. & Chem. Eng.
– reference: Pedrozo, H. A., Rodriguez Reartes, S., Diaz, M. S., Vecchietti, A. R., Grossmann, I. E. (2020), Coproduction of ethylene and propylene based on ethane and propane feedstocks, Computer Aided Chemical Engineering, 48, 907-912.
– volume: 108
  start-page: 250
  year: 2018
  end-page: 267
  ident: bb0010
  article-title: Advances in surrogate based modeling, feasibility analysis, and optimization: A review
  publication-title: Comp. & Chem. Eng.
– reference: fo.net
– volume: 67
  year: 2021
  ident: bb0055
  article-title: Flexibility index of black-box models with parameter uncertainty through derivative-free optimization
  publication-title: AIChE Journal
SSID ssib049088477
ssib019619890
ssib049006584
ssib045323371
Score 1.6427081
Snippet In this work, we propose an iterative framework to solve superstructure design problems, which includes surrogate models, with a custom implementation of the...
SourceID elsevier
SourceType Publisher
StartPage 1267
SubjectTerms derivative free optimization
disjunctive programming
superstructure optimization
surrogate models
Title Surrogate Modeling for Superstructure Optimization with Generalized Disjunctive Programming
URI https://dx.doi.org/10.1016/B978-0-323-85159-6.50211-6
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9swFLYK22HaZdM27QebfOCGnCVxcJIDh5ZuILExRBlC2iFyYltkghSVFqH-I_t39_wruKAdpmmXKI3iOn6f9fz5-fkzQptMKVXUNUxTuUxJJnhBClZLIoDeM614xc3q-emX_PCwODsrjwaDX34vzM1F3nXF7W159V-hhmcAtt46-xdw938KD-AeQIcrwA7Xe4x4NfZqxQbcIQ1bw1bo2K2XAwhkB--coZhNlyZSuh8No37lReosT4PuJBpFW8dTARP4hVz6F04BjvNWzm0ewDA67ouOW27C0V-jSRR2xcliNpvqcJ05ee3C525OFleae2r9Wr2K8Q2c16XbFWrDw04Su11CS8bt9U8Ygk2i05HNKbv0jXFBizQNghZ-7hpTYAuaTbHQ_eYx0ZL3oX-2kqbOwSapPb3DDdZJag_-eTAQ2JjEyOkHp5SYqgiLtoHUJOSe-rYZz0crH2XeY2toLc_BfT4a7o73DryjAq-lU816R5dtQ7FAVzArLbMLfhfAAsxBP76FJnPAVZY6Jai-cq-Om7CPf25CQJ8CSnTyDD3V22Sw3r8CzXuOBrJ7gX70UGMPNQao8SrUOIQaa6hxADUOoMYB1C_R98-fTnb3iTu-g8iEJnMii1IokbE6LXhGs5o38N1KUNFQ8AtSljmlJWdAGgUTSrGmaVRcU5aXMldgX_oKrXfTTr5GOOG81MqHAiYzWdwAqU5ErWpFucrTjNM3aMebonLM0TLCCvpD5RMZtSmruAJTVsaUFauMKSv29h_Lv0NP7nr5BloHe8r36HFzM2-vZx9c7_kNNwKJbw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Computer+Aided+Chemical+Engineering&rft.au=Pedrozo%2C+H.A.&rft.au=Reartes%2C+S.B.+Rodriguez&rft.au=Vecchietti%2C+A.R.&rft.au=Diaz%2C+M.S.&rft.atitle=Surrogate+Modeling+for+Superstructure+Optimization+with+Generalized+Disjunctive+Programming&rft.date=2022-01-01&rft.isbn=9780323851596&rft.issn=1570-7946&rft.volume=49&rft.spage=1267&rft.epage=1272&rft_id=info:doi/10.1016%2FB978-0-323-85159-6.50211-6&rft.externalDocID=B9780323851596502116
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-7946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-7946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-7946&client=summon