Improved Sequential Least Squares Programming–Driven Feasible Path Algorithm for Process Optimisation

Sequential least squares programming (SLSQP) algorithm has been shown to be useful for driving the feasible path algorithms for process optimisation. However, the existing SLSQP algorithms still need many function evaluations for computationally challenging process optimisation problems. In the curr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer Aided Chemical Engineering Ročník 51; s. 1279 - 1284
Hlavní autoři: Ma, Yingjie, Zhang, Nan, Li, Jie
Médium: Kapitola
Jazyk:angličtina
Vydáno: 2022
Témata:
ISBN:0323958796, 9780323958790
ISSN:1570-7946
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Sequential least squares programming (SLSQP) algorithm has been shown to be useful for driving the feasible path algorithms for process optimisation. However, the existing SLSQP algorithms still need many function evaluations for computationally challenging process optimisation problems. In the current work, we propose several novel strategies to improve both the efficiency and convergence of the SLSQP algorithm. Solving a large-scale process optimisation problem indicates that the algorithm can save computational times by 10-90% with better solutions generated.
ISBN:0323958796
9780323958790
ISSN:1570-7946
DOI:10.1016/B978-0-323-95879-0.50214-9