Evolution strategies for engineering design optimisation

Computer simulations of complex engineering problems have become a standard tool of modern product development and design. The increasing computational power at modest costs leads to a growing interest in directly using computer simulation codes for automatic product optimization. Traditional numeri...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational Fluid and Solid Mechanics 2003 s. 2394 - 2397
Hlavní autoři: Willmes, Lars, Bäck, Thomas
Médium: Kapitola
Jazyk:angličtina
Vydáno: Elsevier Ltd 2003
ISBN:0080440460, 9780080440460
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Computer simulations of complex engineering problems have become a standard tool of modern product development and design. The increasing computational power at modest costs leads to a growing interest in directly using computer simulation codes for automatic product optimization. Traditional numerical optimization methods have some drawbacks that make them difficult to use with complex simulation software. Gradient-based methods are always local optimizers, thus requiring additional methods such as random restarts to find global optima. Evolutionary optimization is a way to overcome some of these limitations. This chapter presents a paper that introduces evolution strategies as a robust and fault-tolerant optimization method, which does not rely on gradients, is easily adaptable to massively parallel computing systems and can be used for single and multiple-criteria optimization. It describes a complex and aerodynamical test problem that was solved by an evolution strategy. This paper introduces the basic elements of evolution strategies and addresses their important features such as self adaptation, robustness, and multiprocessor implementations.
AbstractList Computer simulations of complex engineering problems have become a standard tool of modern product development and design. The increasing computational power at modest costs leads to a growing interest in directly using computer simulation codes for automatic product optimization. Traditional numerical optimization methods have some drawbacks that make them difficult to use with complex simulation software. Gradient-based methods are always local optimizers, thus requiring additional methods such as random restarts to find global optima. Evolutionary optimization is a way to overcome some of these limitations. This chapter presents a paper that introduces evolution strategies as a robust and fault-tolerant optimization method, which does not rely on gradients, is easily adaptable to massively parallel computing systems and can be used for single and multiple-criteria optimization. It describes a complex and aerodynamical test problem that was solved by an evolution strategy. This paper introduces the basic elements of evolution strategies and addresses their important features such as self adaptation, robustness, and multiprocessor implementations.
Author Willmes, Lars
Bäck, Thomas
Author_xml – sequence: 1
  givenname: Lars
  surname: Willmes
  fullname: Willmes, Lars
  organization: NuTech Solutions GmbH, Martin-Schmeißer Weg 15, 44227 Dortmund, Germany
– sequence: 2
  givenname: Thomas
  surname: Bäck
  fullname: Bäck, Thomas
  organization: NuTech Solutions GmbH, Martin-Schmeißer Weg 15, 44227 Dortmund, Germany
BookMark eNo9kFFLAzEQhAMqaGv_Q_5A6iZ3udt7tKVqoeCLPockt3dEaiKX2N9vT6XzMjAMs-y3YNcxRWKMS1hLkM3DpmtRACDUNdSNgLUGjSjkFVtcUrhlq5w_4CypWt1Vdwx3p3T8LiFFnstkC42BMh_SxCmOIRJNIY68pxzGyNNXCZ8h27l-z24Ge8y0-vcle3_avW1fxOH1eb99PAiSqitiUJqaamgbqyqHvbKkoEeslYOenKtxsK5y3msPWmJjyTdATtWIHnXrdLVkm79dOh85BZpM9oGipz5M5IvpUzASzMzAzAzM5VsD5peBkdUPLihU-w
ContentType Book Chapter
Copyright 2003 Elsevier Ltd
Copyright_xml – notice: 2003 Elsevier Ltd
DOI 10.1016/B978-008044046-0.50588-1
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EndPage 2397
ExternalDocumentID B9780080440460505881
GroupedDBID -KG
-VX
089
20A
38.
A4I
A4J
AAAAS
AABBV
AAGAK
AAORS
AAXUO
AAYWO
AAZNM
ABARN
ABGWT
ABIAV
ABLXK
ABMAC
ABQPQ
ABQQC
ACHHS
ACITS
ACLGV
ACXMD
ADCEY
ADVEM
AERYV
AFOJC
AGAMA
AIXPE
AJFER
AJLEP
AJLYV
AKHYG
ALMA_UNASSIGNED_HOLDINGS
ALTAS
ARRBH
ASPBG
AVWKF
AZFZN
AZZ
BBABE
BBQZY
BGHEG
CZZ
DUGUG
EBSCA
ECOWB
FEDTE
GEOUK
HGY
HVGLF
INJ
IPG
IVK
KNBBP
MYL
PQQKQ
SDK
XI1
ID FETCH-LOGICAL-e129t-f25e63f76a23b8d2ae20d8842b0debb48fab3bcc5c05186aec60eb2488c857b53
ISBN 0080440460
9780080440460
IngestDate Fri Feb 23 02:22:35 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-e129t-f25e63f76a23b8d2ae20d8842b0debb48fab3bcc5c05186aec60eb2488c857b53
PageCount 4
ParticipantIDs elsevier_sciencedirect_doi_10_1016_B978_008044046_0_50588_1
PublicationCentury 2000
PublicationDate 2003
PublicationDateYYYYMMDD 2003-01-01
PublicationDate_xml – year: 2003
  text: 2003
PublicationDecade 2000
PublicationTitle Computational Fluid and Solid Mechanics 2003
PublicationYear 2003
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Deb (bib7) 2001
Emmerich M, Bäck T, Willmes L. Asynchronous evolution strategies for distributed direct optimisation. In: Giannakoglou K, Tsahalis D, Periaux J, Papailiou K, Fogarty T (Eds), Evolutionary Methods for Design, Optimisation and Control. Barcelona, 2002.
Schwefel, Bäck (bib3) 1998
Bäck, Fogel, Michalewicz (bib2) 1997
Naujoks B, Willmes L, Haase W, Bäck T, Schütz M. Multipoint airfoil optimization using evolution strategies. In: Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS'00), Barcelona 2000.
Bäck (bib1) 1996
Hansen, Ostermeier, Gawelcyk (bib5) 1994; 4
Schwefel (bib4) 1995
References_xml – reference: Naujoks B, Willmes L, Haase W, Bäck T, Schütz M. Multipoint airfoil optimization using evolution strategies. In: Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS'00), Barcelona 2000.
– year: 1998
  ident: bib3
  article-title: Artificial Evolution: How and Why?
  publication-title: Genetic Algorithms and Evolution Strategies in Engineering and Computer Science
– year: 1995
  ident: bib4
  publication-title: Evolution and Optimum Seeking
– volume: 4
  year: 1994
  ident: bib5
  article-title: A derandomized approach to self-adaptation of evolution strategies
  publication-title: Evolut Comput
– reference: Emmerich M, Bäck T, Willmes L. Asynchronous evolution strategies for distributed direct optimisation. In: Giannakoglou K, Tsahalis D, Periaux J, Papailiou K, Fogarty T (Eds), Evolutionary Methods for Design, Optimisation and Control. Barcelona, 2002.
– year: 1996
  ident: bib1
  publication-title: Evolutionary Algorithms in Theory and Practice
– year: 2001
  ident: bib7
  publication-title: Multi-Objective Optimization using Evolutionary Algorithms
– year: 1997
  ident: bib2
  publication-title: Handbook of Evolutionary Computation
SSID ssj0000127593
Score 1.2740014
Snippet Computer simulations of complex engineering problems have become a standard tool of modern product development and design. The increasing computational power...
SourceID elsevier
SourceType Publisher
StartPage 2394
Title Evolution strategies for engineering design optimisation
URI https://dx.doi.org/10.1016/B978-008044046-0.50588-1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8NAFB7cDuLBHXdy8FYiyWSZGbxVWgXXQwu9hdkKgqZiq_jzfbNkqehBxEtIhqzzhTdv3nzvewidwhCsxpjFoYwBhlQyEXIlWcgygTllaY6F1Zm9IXd3dDRiD77M3dSWEyBlST8-2Mu_Qg1tALZJnf0F3PVNoQH2AXTYAuyw_eIRz8dendiALdJQBfj6T2-PypMzn2DvVps8X6PLbMhi7ZCLT0u44c3iTteuoafOXLZ4RP7_6r37r-hMZ5XchNMPbxQOO8ryQzoTsEvPnjc0F2ZIvoQZ6vyXhmzkpqDG5TQag64qQGUGE1e52A-pcEi-NdcuctC1Kr_VfcLoDLwyADVuhqiaONide6I9D6a-i4SAiVu-7N0Pr-sAm1lTz1hiZ-LVBV5xqT721C5D-PvpJVpOSsvxGGygNZOMEpgsEXjBTbSgyy207qcOgTfM021EaziCBo4A4AhacAQOjqANxw4a9nuDi6vQF8UINbhms3CMM50nY5JznAiqMNc4UpSmWERKC5HSMReJkDKTYG5pzrXMIy0w2GlJMyKyZBctlZNS76GAaQ6jW2xE9aNUKs55Tpgi0JjJBCb---i8-vTC-2POzyoAv6KiB5qOK-qOK6LCdlwRH_zp6kO02vyFR2hp9vqmj9GKfJ89Tl9PPNafkdBUMA
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Computational+Fluid+and+Solid+Mechanics+2003&rft.au=Willmes%2C+Lars&rft.au=B%C3%A4ck%2C+Thomas&rft.atitle=Evolution+strategies+for+engineering+design+optimisation&rft.date=2003-01-01&rft.pub=Elsevier+Ltd&rft.isbn=9780080440460&rft.spage=2394&rft.epage=2397&rft_id=info:doi/10.1016%2FB978-008044046-0.50588-1&rft.externalDocID=B9780080440460505881
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780080440460/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780080440460/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780080440460/sc.gif&client=summon&freeimage=true