Chapter 1 Partial Combinatory Algebras

This chapter explores the theories and definitions related to the partial-combinatory algebras. It distinguishes a few closed terms––pairing, booleans, and definition by cases. One of the main motivating constructions for the study of pcas is introduced––P(A)-valued predicates, conditional pcas, and...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Studies in Logic and the Foundations of Mathematics Ročník 152; s. 1 - 47
Médium: Kapitola
Jazyk:angličtina
Vydáno: 2008
ISBN:9780444515841, 0444515844
ISSN:0049-237X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This chapter explores the theories and definitions related to the partial-combinatory algebras. It distinguishes a few closed terms––pairing, booleans, and definition by cases. One of the main motivating constructions for the study of pcas is introduced––P(A)-valued predicates, conditional pcas, and Longley's theorem. Some examples and important properties of pcas are also discussed and the role of recursion theory in pcas and the finite types are also focused. The best known pca isKleene's first model or κ1 and is the set N with partial recursive application. Kleene's second model κ2 or the pca for function realizability, the set of functions N N as an infinite product, with the product topology are considered. The sequential computations, the Scott's graph model P(ω), domain models, relativized model, term models, Pitt's model, and arithmetic models are also described. Morphisms and assemblies are chosen to organize pcas into a category. Applicative morphisms and S-functors among categories of assemblies are focused. Decidable applicative morphisms and adjoining partial functions to a pca proves the partial recursive application in F. The chapter also discusses order-pcas as a generalization of the notion of pca.
AbstractList This chapter explores the theories and definitions related to the partial-combinatory algebras. It distinguishes a few closed terms––pairing, booleans, and definition by cases. One of the main motivating constructions for the study of pcas is introduced––P(A)-valued predicates, conditional pcas, and Longley's theorem. Some examples and important properties of pcas are also discussed and the role of recursion theory in pcas and the finite types are also focused. The best known pca isKleene's first model or κ1 and is the set N with partial recursive application. Kleene's second model κ2 or the pca for function realizability, the set of functions N N as an infinite product, with the product topology are considered. The sequential computations, the Scott's graph model P(ω), domain models, relativized model, term models, Pitt's model, and arithmetic models are also described. Morphisms and assemblies are chosen to organize pcas into a category. Applicative morphisms and S-functors among categories of assemblies are focused. Decidable applicative morphisms and adjoining partial functions to a pca proves the partial recursive application in F. The chapter also discusses order-pcas as a generalization of the notion of pca.
BookMark eNo9z81KxDAUBeCAIziOfQShK9FF9d4kTdOVDMU_GFBQwV24SW61MraSFsG3d2YUV2dzOIfvUMz6oWchjhHOEdBcPALoupCqejkFe2YBQBW4J7K6sqC1LrG0Gmdi_l87ENk4vm96IJXSWs7FSfNGnxOnHPMHSlNH67wZPnzX0zSk73y5fmWfaDwS-y2tR87-ciGer6-emttidX9z1yxXBaM0U6GiJ9XaWrE1wUTPoZaqDWUsPRjUtSoDkuGqIqkJbKwgWgkUPDO2ZEgtxOXvLm9OvjpObgwd94FjlzhMLg6dQ3Bbvdvp3ZblwLqd3qH6AdShTp8
ContentType Book Chapter
Copyright 2008 Elsevier B.V.
Copyright_xml – notice: 2008 Elsevier B.V.
DOI 10.1016/S0049-237X(08)80003-1
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EndPage 47
ExternalDocumentID S0049237X08800031
GroupedDBID 089
20A
38.
A4I
A4J
AAAAS
AABBV
AAGAK
AAORS
AAXUO
AAYWO
AAZNM
ABARN
ABGWT
ABLXK
ABMAC
ABOVZ
ABQPQ
ABQQC
ACLGV
ACXMD
ADCEY
ADVEM
AERYV
AFOJC
AGAMA
AHUFE
AJFER
AJLYV
ALMA_UNASSIGNED_HOLDINGS
ANFFI
ASVZH
AUHWD
AZZ
BBABE
BYTKM
CETPU
CZZ
D8I
DNKAV
EBSCA
GEOUK
HGY
INO
JMA
MVJ
MYL
SDK
UO7
ID FETCH-LOGICAL-e126t-3dba3f893e86c6dbec923fc5d5b0614935c1a6e77a24a08d70d820acbee1fa6a3
ISBN 9780444515841
0444515844
ISSN 0049-237X
IngestDate Fri Feb 23 02:27:13 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-e126t-3dba3f893e86c6dbec923fc5d5b0614935c1a6e77a24a08d70d820acbee1fa6a3
PageCount 47
ParticipantIDs elsevier_sciencedirect_doi_10_1016_S0049_237X_08_80003_1
PublicationCentury 2000
PublicationDate 2008
PublicationDateYYYYMMDD 2008-01-01
PublicationDate_xml – year: 2008
  text: 2008
PublicationDecade 2000
PublicationTitle Studies in Logic and the Foundations of Mathematics
PublicationYear 2008
SSID ssj0000233442
Score 1.2970798
Snippet This chapter explores the theories and definitions related to the partial-combinatory algebras. It distinguishes a few closed terms––pairing, booleans, and...
SourceID elsevier
SourceType Publisher
StartPage 1
Title Chapter 1 Partial Combinatory Algebras
URI https://dx.doi.org/10.1016/S0049-237X(08)80003-1
Volume 152
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEA66elAvPvFNDyJ6KDZtmqRHkVVBWQV3YW8lTbIiaJXdVfbnO0nTNupJwUspbRqSfOn0m-k8EDqSZESJJKCpwpsUEhqLsMCxDAnGkmkTfFnYlPm3rNfjw2F270pwTmw5AVaWfDbL3v4VargGYJvQ2V_A3XQKF-AcQIcjwA7Hb4z4q-21Cuyo3AKNFcNUUZaNg2RbPsl5vdTZWif-pjHRCCZrIgZmCVvKGhZeQHeufsWfPz-a38xfLQXcsxTUCqPJDgcMhhPsC0WShXFiK9a3QrHKK-vEGva-j1WCzB-StzICPDSdAT828QUZj6z3W_u5aZwAbVvTFASdaQQ67DxjIKsWrrp3g5vGUgasIiGkSvvuOrepBdxMSJ1GqZ5ZG6d11g7nJOKnbige7fCoRH8VrZjwksCt9Bqa0-U6Wvbw2EDH7maAAwdD4MEQ1DBsosFlt39xHbp6FqHGMZ2GiSpEMgKCqDmVVMHbA9MfyVSlhdHLsySVWFDNmIiJiLhikQJ-JmShNR4JKpIt1ClfS72NApJqgYWSLFUFURz6TChRUcZZxmmq4h3E6znmjkpVFCkHvPLWsw-WJzfLk0c8t8uT492_P7qHltp9t4860_G7PkCL8mP6NBkfOlw_AbAyNpE
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Studies+in+Logic+and+the+Foundations+of+Mathematics&rft.atitle=Chapter+1+Partial+Combinatory+Algebras&rft.date=2008-01-01&rft.isbn=9780444515841&rft.issn=0049-237X&rft.volume=152&rft.spage=1&rft.epage=47&rft_id=info:doi/10.1016%2FS0049-237X%2808%2980003-1&rft.externalDocID=S0049237X08800031
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0049-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0049-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0049-237X&client=summon