Residual-corrected TSMixer with a RIME-enhanced decomposition strategy for photovoltaic power prediction
•Proposes a RIME-enhanced two-stage decomposition for deep feature extraction.•Bayesian optimization and residual correction enhance the model’s performance.•The model’s excellent balance of accuracy and efficiency is verified by experiments. To address the challenges of volatility and uncertainty i...
Uložené v:
| Vydané v: | Electric power systems research Ročník 253 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.04.2026
|
| Predmet: | |
| ISSN: | 0378-7796 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Proposes a RIME-enhanced two-stage decomposition for deep feature extraction.•Bayesian optimization and residual correction enhance the model’s performance.•The model’s excellent balance of accuracy and efficiency is verified by experiments.
To address the challenges of volatility and uncertainty in photovoltaic (PV) power prediction, this paper proposes a hybrid prediction model based on two-stage decomposition and residual correction (RC). The model first employs Variational Mode Decomposition (VMD), optimized by the RIME algorithm, for primary decomposition, followed by secondary decomposition of the resulting high-frequency residuals using Complete Ensemble EMD with Adaptive Noise (CEEMDAN) to achieve deep feature extraction. Subsequently, a TSMixer model, fine-tuned by the Bayesian Optimization Algorithm (BOA), is used to predict each component. Finally, the prediction results are rectified through an error correction mechanism. Comprehensive experiments based on datasets from multiple sites with diverse climatic conditions–including Alice Springs and Yulara in Australia, and Xinjiang in China–show that the proposed model demonstrates significant performance advantages over several comparative models, validating its effectiveness, robustness, and generalizability in complex PV power prediction tasks. |
|---|---|
| AbstractList | •Proposes a RIME-enhanced two-stage decomposition for deep feature extraction.•Bayesian optimization and residual correction enhance the model’s performance.•The model’s excellent balance of accuracy and efficiency is verified by experiments.
To address the challenges of volatility and uncertainty in photovoltaic (PV) power prediction, this paper proposes a hybrid prediction model based on two-stage decomposition and residual correction (RC). The model first employs Variational Mode Decomposition (VMD), optimized by the RIME algorithm, for primary decomposition, followed by secondary decomposition of the resulting high-frequency residuals using Complete Ensemble EMD with Adaptive Noise (CEEMDAN) to achieve deep feature extraction. Subsequently, a TSMixer model, fine-tuned by the Bayesian Optimization Algorithm (BOA), is used to predict each component. Finally, the prediction results are rectified through an error correction mechanism. Comprehensive experiments based on datasets from multiple sites with diverse climatic conditions–including Alice Springs and Yulara in Australia, and Xinjiang in China–show that the proposed model demonstrates significant performance advantages over several comparative models, validating its effectiveness, robustness, and generalizability in complex PV power prediction tasks. |
| ArticleNumber | 112554 |
| Author | Cao, Lipeng Shao, Xing Wang, Cuixiang Gao, Jun |
| Author_xml | – sequence: 1 givenname: Lipeng orcidid: 0009-0001-6333-357X surname: Cao fullname: Cao, Lipeng – sequence: 2 givenname: Xing orcidid: 0000-0001-8148-9984 surname: Shao fullname: Shao, Xing email: shaoxing269@sina.com – sequence: 3 givenname: Cuixiang orcidid: 0009-0008-4018-8358 surname: Wang fullname: Wang, Cuixiang – sequence: 4 givenname: Jun orcidid: 0009-0000-6107-4327 surname: Gao fullname: Gao, Jun |
| BookMark | eNotkN9OwjAUxnuBiYC-gFd9gc12o-2WeGMIKgnEBPG6Ke2p64Lr0lbQt2cLXp2L7-T785uhSec7QOiBkpwSyh_bHPoY8oIULKe0YGwxQVNSiioToua3aBZjSwjhtWBT1OwgOvOjjpn2IYBOYPD-Y-t-IeCzSw1WeLferjLoGtXpQTSg_Xfvo0vOdzimoBJ8_WHrA-4bn_zJH5NyGvf-PFj0AYzT4-sdurHqGOH-_87R58tqv3zLNu-v6-XzJoOhasoqU1NVqLI6mJozoohitrbCGgbCaAEMSgNwEAvFGHCoKRDLqLGac1IAiHKOnq6-MIScHAQZtYOxuhvnSeOdpESOpGQrR1JyJCWvpMoLwu9lvg |
| ContentType | Journal Article |
| Copyright | 2025 |
| Copyright_xml | – notice: 2025 |
| DOI | 10.1016/j.epsr.2025.112554 |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | S0378779625011411 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9DU 9JN AABNK AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACIWK ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADHUB ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHIDL AHJVU AI. AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ARUGR ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 E.L EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAC SDF SDG SES SET SEW SPC SPCBC SSR SST SSW SSZ T5K VH1 WUQ ZMT ~G- ~HD |
| ID | FETCH-LOGICAL-e125t-8d91a2a38bd9650a0a5f9f7fd5e7dc7e5e3deeb74a55e6e91e0f51dfc6602ee73 |
| ISSN | 0378-7796 |
| IngestDate | Wed Dec 10 14:24:58 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Two-stage decomposition Photovoltaic power prediction Bayesian optimization algorithm TSMixer Residual correction |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-e125t-8d91a2a38bd9650a0a5f9f7fd5e7dc7e5e3deeb74a55e6e91e0f51dfc6602ee73 |
| ORCID | 0009-0000-6107-4327 0000-0001-8148-9984 0009-0008-4018-8358 0009-0001-6333-357X |
| ParticipantIDs | elsevier_sciencedirect_doi_10_1016_j_epsr_2025_112554 |
| PublicationCentury | 2000 |
| PublicationDate | April 2026 |
| PublicationDateYYYYMMDD | 2026-04-01 |
| PublicationDate_xml | – month: 04 year: 2026 text: April 2026 |
| PublicationDecade | 2020 |
| PublicationTitle | Electric power systems research |
| PublicationYear | 2026 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Wang, Ma (bib0023) 2024; 295 Zhou, Liu, Wang, Wang, Jia (bib0022) 2025 Ahmed, Sreeram, Togneri, Datta, Arif (bib0015) 2022; 258 Zhang, Peng, Nazir (bib0024) 2022; 213 Zarzycki, Ławryńczuk (bib0016) 2022; 616 Hassan, Hsu, Mounich, Algburi, Jaszczur, Telba, Viktor, Awwad, Ahsan, Ali (bib0003) 2024; 66 Peng, Fu, Wang, Xiong, Suo, Nazir, Zhang (bib0031) 2023; 78 Polasek, Čadík (bib0008) 2023; 339 Zhu, Ren, Gu, Zhang, Sun (bib0004) 2023; 147 Agga, Abbou, Labbadi, El Houm, Ali (bib0014) 2022; 208 Yu, Niu, Wang, Du, Yu, Sun, Wang (bib0009) 2023; 275 Wu, Hu, Zhu, Jiang, Lv, Dong, Zhang (bib0011) 2024; 288 Gong, Qu, Zhu, Xu (bib0020) 2025; 320 Bai, Shi, Yue, Du (bib0007) 2023; 6 Lin, Zhang, Li, Lu (bib0025) 2022; 504 Su, Zhao, Heidari, Liu, Zhang, Mafarja, Chen (bib0033) 2023; 532 Tian, Ooka, Lee (bib0002) 2023; 426 Shang, Sang, Tiwari, Khan, Zhao (bib0001) 2024; 362 Li, Song, Wang, Wang, Jia (bib0028) 2022; 251 Diebold, Mariano (bib0036) 2002; 20 Li, Zhang, Ma, Jiao, Wang, Hu (bib0010) 2021; 224 Pelikan (bib0034) 2005 Zhang, Sun, Guo, Lu (bib0030) 2025; 243 Wang, Yan, Li, Zhang, Jiang, Yang, Li, Li, Zhang, Wang (bib0026) 2024; 236 Peng, Song, Suo, Wang, Nazir, Zhang (bib0005) 2024; 308 Chen, Peng, Qian, Ge, Wang, Nazir, Zhang (bib0019) 2025; 377 Kim, Obregon, Park, Jung (bib0018) 2024; 200 Zhang, Lv, Ma, Zhao, Wang, O’Hare (bib0021) 2020; 397 Sun, Liu (bib0032) 2024; 305 Hou, Zhang, Liu, Ye (bib0013) 2024; 11 Nguyen, Phan (bib0027) 2022; 8 Zhuo, Ni, Xiao (bib0029) 2024; 39 Huang, Li, Tai, Chen, Liu, Shi, Liu (bib0017) 2022; 246 Chen, Li, Arik, Yoder, Pfister (bib0035) 2023 Jiang, Ding, Chen, Cui, Zhang, Yang, Cang, Cao (bib0006) 2024; 308 Yang, Huang (bib0012) 2018; 6 |
| References_xml | – volume: 362 year: 2024 ident: bib0001 article-title: Impacts of renewable energy on climate risk: a global perspective for energy transition in a climate adaptation framework publication-title: Appl. Energy – volume: 243 year: 2025 ident: bib0030 article-title: Short-term photovoltaic power prediction with CPO-BILSTM based on quadratic decomposition publication-title: Electr. Power Syst. Res. – volume: 246 year: 2022 ident: bib0017 article-title: Time series forecasting for hourly photovoltaic power using conditional generative adversarial network and Bi-LSTM publication-title: Energy – volume: 11 start-page: 5125 year: 2024 end-page: 5138 ident: bib0013 article-title: A hybrid machine learning forecasting model for photovoltaic power publication-title: Energy Rep. – volume: 426 year: 2023 ident: bib0002 article-title: Multi-scale solar radiation and photovoltaic power forecasting with machine learning algorithms in urban environment: a state-of-the-art review publication-title: J. Clean. Prod. – volume: 616 start-page: 229 year: 2022 end-page: 254 ident: bib0016 article-title: Advanced predictive control for GRU and LSTM networks publication-title: Inf. Sci. – volume: 20 start-page: 134 year: 2002 end-page: 144 ident: bib0036 article-title: Comparing predictive accuracy publication-title: J. Bus. Econ. Stat. – volume: 377 year: 2025 ident: bib0019 article-title: An error-corrected deep autoformer model via Bayesian optimization algorithm and secondary decomposition for photovoltaic power prediction publication-title: Appl. Energy – volume: 532 start-page: 183 year: 2023 end-page: 214 ident: bib0033 article-title: RIME: A physics-based optimization publication-title: Neurocomputing – volume: 397 start-page: 438 year: 2020 end-page: 446 ident: bib0021 article-title: A photovoltaic power forecasting model based on dendritic neuron networks with the aid of wavelet transform publication-title: Neurocomputing – year: 2023 ident: bib0035 article-title: TSMixer: an all-MLP architecture for time series forecast-ing publication-title: Trans. Mach. Learn. Res. – volume: 275 year: 2023 ident: bib0009 article-title: Short-term photovoltaic power point-interval forecasting based on double-layer decomposition and WOA-BiLSTM-Attention and considering weather classification publication-title: Energy – volume: 320 year: 2025 ident: bib0020 article-title: Parallel TimesNet-BiLSTM model for ultra-short-term photovoltaic power forecasting using STL decomposition and auto-tuning publication-title: Energy – volume: 66 year: 2024 ident: bib0003 article-title: Enhancing smart grid integrated renewable distributed generation capacities: implications for sustainable energy transformation publication-title: Sustain. Energy Technol. Assess. – volume: 504 start-page: 56 year: 2022 end-page: 67 ident: bib0025 article-title: Multi-step prediction of photovoltaic power based on two-stage decomposition and BILSTM publication-title: Neurocomputing – volume: 78 year: 2023 ident: bib0031 article-title: An intelligent hybrid approach for photovoltaic power forecasting using enhanced chaos game optimization algorithm and locality sensitive hashing based informer model publication-title: J. Build. Eng. – year: 2005 ident: bib0034 article-title: Bayesian optimization algorithm publication-title: Hierarchical Bayesian optimization algorithm: toward a new generation of evolutionary algorithms – volume: 251 year: 2022 ident: bib0028 article-title: A novel offshore wind farm typhoon wind speed prediction model based on PSO–Bi-LSTM improved by VMD publication-title: Energy – volume: 258 year: 2022 ident: bib0015 article-title: Computationally expedient photovoltaic power forecasting: a LSTM ensemble method augmented with adaptiveweighting and data segmentation technique publication-title: Energy Convers. Manag. – volume: 39 start-page: 80 year: 2024 end-page: 88 ident: bib0029 article-title: Single-parameter time series prediction method for thermal systems based on GWO-VMD-LSTM publication-title: Therm. Eng. – volume: 6 start-page: 51200 year: 2018 end-page: 51205 ident: bib0012 article-title: Ultra-short-term prediction of photovoltaic power based on periodic extraction of PV energy and LSH algorithm publication-title: IEEE Access – volume: 200 year: 2024 ident: bib0018 article-title: Multi-step photovoltaic power forecasting using transformer and recurrent neural networks publication-title: Renew. Sustain. Energy Rev. – volume: 208 year: 2022 ident: bib0014 article-title: CNN-LSTM: An efficient hybrid deep learning architecture for predicting short-term photovoltaic power production publication-title: Electr. Power Syst. Res. – volume: 288 year: 2024 ident: bib0011 article-title: Combined IXGBoost-KELM short-term photovoltaic power prediction model based on multidimensional similar day clustering and dual decomposition publication-title: Energy – volume: 224 year: 2021 ident: bib0010 article-title: A multi-step ahead photovoltaic power prediction model based on similar day, enhanced colliding bodies optimization, variational mode decomposition, and deep extreme learning machine publication-title: Energy – volume: 295 year: 2024 ident: bib0023 article-title: A hybrid deep learning model with an optimal strategy based on improved VMD and transformer for short-term photovoltaic power forecasting publication-title: Energy – year: 2025 ident: bib0022 article-title: Combined ultra-short-term photovoltaic power prediction based on CEEMDAN decomposition and RIME optimized AM-TCN-BiLSTM publication-title: Energy – volume: 147 year: 2023 ident: bib0004 article-title: Economic dispatching of wind/photovoltaic/storage considering load supply reliability and maximize capacity utilization publication-title: Int. J. Electr. Power Energy Syst. – volume: 213 year: 2022 ident: bib0024 article-title: A novel integrated photovoltaic power forecasting model based on variational mode decomposition and CNN-BiGRU considering meteorological variables publication-title: Electr. Power Syst. Res. – volume: 236 year: 2024 ident: bib0026 article-title: Short-term prediction of photovoltaic power based on quadratic decomposition and residual correction publication-title: Electr. Power Syst. Res. – volume: 339 year: 2023 ident: bib0008 article-title: Predicting photovoltaic power production using high-uncertainty weather forecasts publication-title: Appl. Energy – volume: 6 start-page: 184 year: 2023 end-page: 196 ident: bib0007 article-title: Hybrid model based on K-means++ algorithm, optimal similar day approach, and long short-term memory neural network for short-term photovoltaic power prediction publication-title: Global Energy Interconnection – volume: 308 year: 2024 ident: bib0006 article-title: Research on time-series based and similarity search based methods for PV power prediction publication-title: Energy Convers. Manag. – volume: 305 year: 2024 ident: bib0032 article-title: Multivariate short-term wind speed prediction based on PSO-VMD-SE-ICEEMDAN two-stage decomposition and Att-S2S publication-title: Energy – volume: 308 year: 2024 ident: bib0005 article-title: Research and application of a novel graph convolutional RVFL and evolutionary equilibrium optimizer algorithm considering spatial factors in ultra-short-term solar power prediction publication-title: Energy – volume: 8 start-page: 53 year: 2022 end-page: 60 ident: bib0027 article-title: Hourly day ahead wind speed forecasting based on a hybrid model of EEMD, CNN-Bi-LSTM embedded with GA optimization publication-title: Energy Rep. |
| SSID | ssj0006975 |
| Score | 2.463901 |
| Snippet | •Proposes a RIME-enhanced two-stage decomposition for deep feature extraction.•Bayesian optimization and residual correction enhance the model’s... |
| SourceID | elsevier |
| SourceType | Publisher |
| SubjectTerms | Bayesian optimization algorithm Photovoltaic power prediction Residual correction TSMixer Two-stage decomposition |
| Title | Residual-corrected TSMixer with a RIME-enhanced decomposition strategy for photovoltaic power prediction |
| URI | https://dx.doi.org/10.1016/j.epsr.2025.112554 |
| Volume | 253 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0378-7796 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0006975 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Na9swFBeh7WE7lK7bWD82dNgtGOIPWdaxlPSLtow2Y7kZVXoiLsUJiVPy5_fJkh23uWyDXowRtmL0-0V6enrv9wj5KRK0IVKTBVrh3y2JIhPIVIaBElwl2iRGmVpd_5rf3mbjsfjV65kmF-b5iZdltlqJ2btCjW0Itk2d_Qe4206xAe8RdLwi7Hj9K-DvYFEnWAXKFt5Q1qIc3d8UK5j7RLb-3eXNMIBy4g7_Ndiwch-71V84tVoXxjmbTKspzl-VLFR_ZuupWU0BXagWzcanXxfTaR9y8tD2QKLjK6sPOqbODzADv2DW4pCudVys2_54L_bpslghf9v2c_fo1bLseiuitBPkUrvQNtJoXOoWbmU5d6Vtm2k5ciLCG1O88zY84mq9sHquEbNZUMwpUb-Rzr63Hdt-0c7DfZ9NAd-OOBM4gW-fXA7HV-2anYpakrn9EJ9e5SIB3_5Sx27p2CKjPbLrNxH0xIH_ifSg3CcfO9KSn8lkkwbU04BaGlBJX9GAvqIBbWhAkQa0SwNaI0zXNPhCfp8NR6cXga-qEQB-fRVkWoQyknH2oAWa53IgmRGGG82Aa8WBQawBHngiGYMURAgDw0JtVJoOIgAefyVb5bSEb4TGxp7C6ziFME6sbJI0DASTDLflCd4cENYMVO4NOmeo5Qhm3sQXPuZ2gHM7wLkb4MP_fO-IfFhz7phsVfMlfCc76rkqFvMfHvMXLft15A |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Residual-corrected+TSMixer+with+a+RIME-enhanced+decomposition+strategy+for+photovoltaic+power+prediction&rft.jtitle=Electric+power+systems+research&rft.au=Cao%2C+Lipeng&rft.au=Shao%2C+Xing&rft.au=Wang%2C+Cuixiang&rft.au=Gao%2C+Jun&rft.date=2026-04-01&rft.pub=Elsevier+B.V&rft.issn=0378-7796&rft.volume=253&rft_id=info:doi/10.1016%2Fj.epsr.2025.112554&rft.externalDocID=S0378779625011411 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon |