Convergence analysis of the batch gradient-based neuro-fuzzy learning algorithm with smoothing L1/2 regularization for the first-order Takagi–Sugeno system

It has been proven that Takagi–Sugeno systems are universal approximators, and they are applied widely to classification and regression problems. The main challenges of these models are convergence analysis and their computational complexity due to the large number of connections and the pruning of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuzzy sets and systems Jg. 319; S. 28 - 49
Hauptverfasser: Liu, Yan, Yang, Dakun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 15.07.2017
Schlagworte:
ISSN:0165-0114, 1872-6801
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!