Convergence analysis of the batch gradient-based neuro-fuzzy learning algorithm with smoothing L1/2 regularization for the first-order Takagi–Sugeno system

It has been proven that Takagi–Sugeno systems are universal approximators, and they are applied widely to classification and regression problems. The main challenges of these models are convergence analysis and their computational complexity due to the large number of connections and the pruning of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Fuzzy sets and systems Ročník 319; s. 28 - 49
Hlavní autoři: Liu, Yan, Yang, Dakun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 15.07.2017
Témata:
ISSN:0165-0114, 1872-6801
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract It has been proven that Takagi–Sugeno systems are universal approximators, and they are applied widely to classification and regression problems. The main challenges of these models are convergence analysis and their computational complexity due to the large number of connections and the pruning of unnecessary parameters. The neuro-fuzzy learning algorithm involves two tasks: generating comparable sparse networks and training the parameters. In addition, regularization methods have attracted increasing attention for network pruning, particularly the Lq(0<q<1) regularizer after L1 regularization, which can obtain better solutions to sparsity problems. The L1/2 regularizer has a specific sparsity capacity and it is representative of Lq(0<q<1) regularizations. However, the nonsmoothness of the L1/2 regularizer may lead to oscillations in the learning process. In this study, we propose a gradient-based neuro-fuzzy learning algorithm with a smoothing L1/2 regularization for the first-order Takagi–Sugeno fuzzy inference system. The proposed approach has the following three advantages: (i) it enhances the original L1/2 regularizer by eliminating the oscillation of the gradient in the cost function during the training; (ii) it performs better by pruning inactive connections, where the number of the redundant connections for removal is higher than that generated by the original L1/2 regularizer, while it is also implemented by simultaneous structure and parameter learning processes; and (iii) it is possible to demonstrate the theoretical convergence analysis of this learning method, which we focus on explicitly. We also provide a series of simulations to demonstrate that the smoothing L1/2 regularization can often obtain more compressive representations than the current L1/2 regularization.
AbstractList It has been proven that Takagi–Sugeno systems are universal approximators, and they are applied widely to classification and regression problems. The main challenges of these models are convergence analysis and their computational complexity due to the large number of connections and the pruning of unnecessary parameters. The neuro-fuzzy learning algorithm involves two tasks: generating comparable sparse networks and training the parameters. In addition, regularization methods have attracted increasing attention for network pruning, particularly the Lq(0<q<1) regularizer after L1 regularization, which can obtain better solutions to sparsity problems. The L1/2 regularizer has a specific sparsity capacity and it is representative of Lq(0<q<1) regularizations. However, the nonsmoothness of the L1/2 regularizer may lead to oscillations in the learning process. In this study, we propose a gradient-based neuro-fuzzy learning algorithm with a smoothing L1/2 regularization for the first-order Takagi–Sugeno fuzzy inference system. The proposed approach has the following three advantages: (i) it enhances the original L1/2 regularizer by eliminating the oscillation of the gradient in the cost function during the training; (ii) it performs better by pruning inactive connections, where the number of the redundant connections for removal is higher than that generated by the original L1/2 regularizer, while it is also implemented by simultaneous structure and parameter learning processes; and (iii) it is possible to demonstrate the theoretical convergence analysis of this learning method, which we focus on explicitly. We also provide a series of simulations to demonstrate that the smoothing L1/2 regularization can often obtain more compressive representations than the current L1/2 regularization.
Author Liu, Yan
Yang, Dakun
Author_xml – sequence: 1
  givenname: Yan
  surname: Liu
  fullname: Liu, Yan
  email: liuyan@dlpu.edu.cn
  organization: School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, China
– sequence: 2
  givenname: Dakun
  surname: Yang
  fullname: Yang, Dakun
  organization: School of Information Science and Technology, Sun Yat-sen University, Guangzhou 510006, China
BookMark eNotkE1OwzAQhS1UJNrCAdj5AkntOM2PWKGKP6kSC8racpxx4pLaku0WtSvuwJrLcRIcYDPzpDfzZvTN0MRYAwhdU5JSQovFNlXep1mUKSlTQtgZmtKqzJKiInSCptFYJoTS_ALNvN8SEnVBpuhrZc0BXAdGAhZGDEevPbYKhx5wI4LscedEq8GEpBEeWmxg72yi9qfTEQ8gnNGmw2LorNOh3-H3WLHfWRv60VjTRYYddPtBOH0SQVuDlXW_8Uo7HxLrWnB4I95Ep78_Pl_28ReL_dEH2F2icyUGD1f_fY5e7-82q8dk_fzwtLpdJ0CzLCSVbCRrKgE5K-uqUDWVIIAsFahcMlLTvKYlLRjJmGobqNs6L-KGJFA14yybo5u_XIhHDhoc91KPSFrtQAbeWs0p4SNpvuWRNB9Jc1LySJr9AMNdesU
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DOI 10.1016/j.fss.2016.07.003
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-6801
EndPage 49
ExternalDocumentID S0165011416302287
GrantInformation_xml – fundername: Natural Science Foundation Guidance Project of Liaoning Province
  grantid: 201602050
– fundername: China Postdoctoral Science Foundation
  grantid: 2015M581334
  funderid: http://dx.doi.org/10.13039/501100002858
– fundername: National Natural Science Foundation of China
  grantid: 61403056
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABUCO
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
K-O
KOM
LG9
LY1
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
WH7
ZMT
~02
~G-
ID FETCH-LOGICAL-e122t-8cbc3b8ae437986f91ceae05fef4c30914917163023fdbe9d946bc3c0e8b91ce3
ISSN 0165-0114
IngestDate Fri Feb 23 02:36:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords First-order Takagi–Sugeno inference system
Pi–Sigma network
Convergence
Smoothing L1/2 regularization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-e122t-8cbc3b8ae437986f91ceae05fef4c30914917163023fdbe9d946bc3c0e8b91ce3
PageCount 22
ParticipantIDs elsevier_sciencedirect_doi_10_1016_j_fss_2016_07_003
PublicationCentury 2000
PublicationDate 2017-07-15
PublicationDateYYYYMMDD 2017-07-15
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-15
  day: 15
PublicationDecade 2010
PublicationTitle Fuzzy sets and systems
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Quah, Quek (br0050) 2006; 36
Wu, Li, Yang, Liu (br0300) 2010; 180
Davanipoor, Zekri, Sheikholeslam (br0130) 2012; 20
Sun, Au, Choi (br0240) 2007; 37
Turkmen, Guney (br0020) 2008; 35
Husaini (br0090) 2012; 9
Chakraborty, Pal (br0230) 2004; 15
Wang, Er, Meng (br0120) 2010; 20
Pedrycz (br0010) 1984; 13
Kukolj, Levi (br0290) 2004; 34
Yu, Li (br0260) 2004; 12
del Campo, Echanobe, Bosque, Tarela (br0250) 2008; 16
Jin (br0150) 2000; 8
Mackay (br0320) 1992; 4
Caydas, Hascalik, Ekici (br0310) 2009; 36
Yu, Li, Luo, Su, Li (br0100) 2010; 31
Pal, Saha (br0140) 2008; 38
Ghazalia, Hussainb, Nawia, Mohamada (br0080) 2009; 72
Kim, Kim, Lee (br0160) 2006; 36
Kisi, Haktanir, Ardiclioglu, Ozturk, Yalcin, Uludag (br0030) 2009; 40
Xu (br0210) 2010
Shin, Ghosh (br0070) 1991
Angelov, Filev (br0060) 2004; 34
Han, Wu, Qiao (br0110) 2014; 44
Saito, Nakano (br0200) 2000; 12
McLoone, Irwin (br0180) 2001; 37
Chang, Xu, Zhang, Wang, Liang (br0190) 2010; 40
Sugeno, Takagi (br0280) 1983; 9
Song, Wang, Tu, Marmarelis, Hampson, Deadwyler, Berger (br0170) 2013; 35
Takagi, Sugeno (br0040) 1985; 15
Stoeva, Nikov (br0270) 2000; 112
Xu, Zhang, Wang, Chang (br0220) 2009; 52
References_xml – volume: 4
  start-page: 415
  year: 1992
  end-page: 447
  ident: br0320
  article-title: Bayesian interpolation
  publication-title: Neural Comput.
– volume: 52
  start-page: 1
  year: 2009
  end-page: 9
  ident: br0220
  article-title: regularizer
  publication-title: Sci. China, Ser. F, Inf. Sci.
– volume: 20
  start-page: 463
  year: 2012
  end-page: 470
  ident: br0130
  article-title: Fuzzy wavelet neural network with an accelerated hybrid learning algorithm
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 16
  start-page: 761
  year: 2008
  end-page: 778
  ident: br0250
  article-title: Efficient hardware/software implementation of an adaptive neuro-fuzzy system
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 112
  start-page: 27
  year: 2000
  end-page: 39
  ident: br0270
  article-title: A fuzzy backpropagation algorithm
  publication-title: Fuzzy Sets Syst.
– volume: 72
  start-page: 2359
  year: 2009
  end-page: 2367
  ident: br0080
  article-title: Non-stationary and stationary prediction of financial time series using dynamic ridge polynomial neural network
  publication-title: Neurocomputing
– start-page: 3151
  year: 2010
  end-page: 3184
  ident: br0210
  article-title: Data modeling: visual psychology approach and L1/2 regularization theory
  publication-title: Proceedings of the International Congress of Mathematicians
– start-page: 13
  year: 1991
  end-page: 18
  ident: br0070
  article-title: The Pi–Sigma networks: an efficient higher-order neural network for pattern classification and function approximation
  publication-title: Proceedings of International Joint Conference on Neural Networks, vol. 1
– volume: 9
  start-page: 313
  year: 1983
  end-page: 325
  ident: br0280
  article-title: Multi-dimensional fuzzy reasoning
  publication-title: Fuzzy Sets Syst.
– volume: 12
  start-page: 709
  year: 2000
  end-page: 729
  ident: br0200
  article-title: Second-order learning algorithm with squared penalty term
  publication-title: Neural Comput.
– volume: 15
  start-page: 110
  year: 2004
  end-page: 123
  ident: br0230
  article-title: A neuro-fuzzy scheme for simultaneous feature selection and fuzzy rule-based classification
  publication-title: IEEE Trans. Neural Netw.
– volume: 36
  start-page: 1006
  year: 2006
  end-page: 1023
  ident: br0160
  article-title: Evolving compact and interpretable Takagi–Sugeno fuzzy models with a new encoding scheme
  publication-title: IEEE Trans. Syst. Man Cybern., Part B, Cybern.
– volume: 180
  start-page: 1630
  year: 2010
  end-page: 1642
  ident: br0300
  article-title: A modified gradient-based neuro-fuzzy learning algorithm and its convergence
  publication-title: Inf. Sci.
– volume: 36
  start-page: 6135
  year: 2009
  end-page: 6139
  ident: br0310
  article-title: An adaptive neuro-fuzzy inference system (ANFIS) model for wire–EDM
  publication-title: Expert Syst. Appl.
– volume: 37
  start-page: 71
  year: 2001
  end-page: 90
  ident: br0180
  article-title: Improving neural network training solutions using regularisation
  publication-title: Neurocomputing
– volume: 8
  start-page: 212
  year: 2000
  end-page: 221
  ident: br0150
  article-title: Fuzzy modeling of high-dimensional systems: complexity reduction and interpretability improvement
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 35
  start-page: 1657
  year: 2008
  end-page: 1667
  ident: br0020
  article-title: Genetic tracker with adaptive neuro-fuzzy inference system for multiple target tracking
  publication-title: Expert Syst. Appl.
– volume: 44
  start-page: 554
  year: 2014
  end-page: 564
  ident: br0110
  article-title: Nonlinear systems modeling based on self-organizing fuzzy-neural-network with adaptive computation algorithm
  publication-title: IEEE Trans. Cybern.
– volume: 36
  start-page: 166
  year: 2006
  end-page: 178
  ident: br0050
  article-title: FITSK: online local learning with generic fuzzy input Takagi–Sugeno–Kang fuzzy framework for nonlinear system estimation
  publication-title: IEEE Trans. Syst. Man Cybern., Part B, Cybern.
– volume: 20
  start-page: 389
  year: 2010
  end-page: 403
  ident: br0120
  article-title: An online self-organizing scheme for parsimonious and accurate fuzzy neural networks
  publication-title: Int. J. Neural Syst.
– volume: 35
  start-page: 335
  year: 2013
  end-page: 357
  ident: br0170
  article-title: Identification of sparse neural functional connectivity using penalized likelihood estimation and basis functions
  publication-title: J. Comput. Neurosci.
– volume: 12
  start-page: 411
  year: 2004
  end-page: 420
  ident: br0260
  article-title: Fuzzy identification using fuzzy neural networks with stable learning algorithms
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 15
  start-page: 116
  year: 1985
  end-page: 132
  ident: br0040
  article-title: Fuzzy identification of systems and its applications to modeling and control
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 9
  start-page: 440
  year: 2012
  end-page: 447
  ident: br0090
  article-title: The effect of network parameters on Pi–Sigma neural network for temperature forecasting
  publication-title: Int. J. Mod. Phys. Conf. Ser.
– volume: 31
  start-page: 3282
  year: 2010
  end-page: 3288
  ident: br0100
  article-title: Prediction of the mechanical properties of the post-forged Ti–6Al–4V alloy using fuzzy neural network
  publication-title: Mater. Des.
– volume: 13
  start-page: 153
  year: 1984
  end-page: 167
  ident: br0010
  article-title: An identification algorithm in fuzzy relational systems
  publication-title: Fuzzy Sets Syst.
– volume: 34
  start-page: 484
  year: 2004
  end-page: 498
  ident: br0060
  article-title: An approach to online identification of Takagi–Sugeno fuzzy models
  publication-title: IEEE Trans. Syst. Man Cybern., Part B, Cybern.
– volume: 38
  start-page: 1626
  year: 2008
  end-page: 1638
  ident: br0140
  article-title: Simultaneous structure identification and fuzzy rule generation for Takagi–Sugeno models
  publication-title: IEEE Trans. Syst. Man Cybern., Part B, Cybern.
– volume: 40
  start-page: 438
  year: 2009
  end-page: 444
  ident: br0030
  article-title: Adaptive neuro-fuzzy computing technique for suspended sediment estimation
  publication-title: Adv. Eng. Softw.
– volume: 34
  start-page: 272
  year: 2004
  end-page: 282
  ident: br0290
  article-title: Identification of complex systems based on neural and Takagi–Sugeno fuzzy model
  publication-title: IEEE Trans. Syst. Man Cybern., Part B, Cybern.
– volume: 40
  start-page: 985
  year: 2010
  end-page: 998
  ident: br0190
  article-title: Robust regularization theory based on
  publication-title: Sci. China
– volume: 37
  start-page: 1321
  year: 2007
  end-page: 1331
  ident: br0240
  article-title: A neuro-fuzzy inference system through integration of fuzzy logic and extreme learning machines
  publication-title: IEEE Trans. Syst. Man Cybern., Part B, Cybern.
SSID ssj0001160
Score 2.2951643
Snippet It has been proven that Takagi–Sugeno systems are universal approximators, and they are applied widely to classification and regression problems. The main...
SourceID elsevier
SourceType Publisher
StartPage 28
SubjectTerms Convergence
First-order Takagi–Sugeno inference system
Pi–Sigma network
Smoothing [formula omitted] regularization
Title Convergence analysis of the batch gradient-based neuro-fuzzy learning algorithm with smoothing L1/2 regularization for the first-order Takagi–Sugeno system
URI https://dx.doi.org/10.1016/j.fss.2016.07.003
Volume 319
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6801
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001160
  issn: 0165-0114
  databaseCode: AIEXJ
  dateStart: 19950113
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEG0NCQc4IFaFsKgP3KwO4yV29zEKiQBBhJRBGk6Wl-6Js3giL1GUE__AEfFzfAlV3W1Ph1wAiYtlWV5arqeqcvnVK0JeAYQUjnpjZRIWLCoTnwkkUxUZzzkKVKntTA-bSA4O-HwuPk0m34demIvTpK755aU4_6-mhmNgbGyd_QtzjzeFA7APRoctmB22f2T4XeSRN0ZjM3MkRzDDzMHxHnmLRvO8OoYhrPS0pCVT_dXVOERi4WWni2VTdUdnlsR-tgST6o4o3d3hNXqGfWO7OEeyoqogm2Raz9ObZSfZohrYFOFhj3qwVjrazYn39ZNb2Rm56NbRUEemUNXrMLFC8Rdb4n6TnfS1W7XwdTnU9G2aUtqNdhpT3YyRSWi6Srek8cg8CVjMbcXDuuzQulnrdLkTvo0A6o3AYGoUx1uqRY123yi2TsNVFBy5iYe4ClwEZKooDpTcIutBsi3A66_vvNubvx8Dve_rJvRx1cNPc00f_O1BTq7j5C-z--Se_fCgOwYwD8hE1g_J3Y-jam_7iPxwoEMH6NClonAO1dCh16FDHejQATp0hA5F6NAROvSD_zqg14FDATj69g5wqAHOz6_fDGSoQcRj8nl_b7b7ltnxHUz6QdAxXuRFmPNMouQlj5XwC5lJ8A1SRUUIeWokUKsJp1apMpeiFFEMVxRTyXM8N3xC1uplLTcIlUrg2IZymucqmspYJD58iEDur-IgErF8SqLh7aY2czQZYQr2Twci43EKRknRKOkUWRfh5r9d9ozcWUH6OVnrml6-ILeLi65qm5cWJb8A8iyZJw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convergence+analysis+of+the+batch+gradient-based+neuro-fuzzy+learning+algorithm+with+smoothing+L1%2F2+regularization+for+the+first-order+Takagi%E2%80%93Sugeno+system&rft.jtitle=Fuzzy+sets+and+systems&rft.au=Liu%2C+Yan&rft.au=Yang%2C+Dakun&rft.date=2017-07-15&rft.pub=Elsevier+B.V&rft.issn=0165-0114&rft.eissn=1872-6801&rft.volume=319&rft.spage=28&rft.epage=49&rft_id=info:doi/10.1016%2Fj.fss.2016.07.003&rft.externalDocID=S0165011416302287
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0114&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0114&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0114&client=summon