Bidirectional Learning Equilibrium Optimizer Combining Sparrow Search and Random Difference

To address the problems of low solution accuracy and slow convergence speed of equilibrium optimizer, a bidirectional learning equilibrium optimizer combining sparrow search and random difference is presented.Firstly, an adaptive population division strategy based on sparrow search algorithm is prop...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Ji suan ji ke xue Ročník 50; číslo 11; s. 248 - 258
Hlavní autori: Hou, Xinyu, Lu, Haiyan, Lu, Mengdie, Xu, Jie, Zhao, Jinjin
Médium: Journal Article
Jazyk:Chinese
Vydavateľské údaje: Chongqing Guojia Kexue Jishu Bu 01.11.2023
Editorial office of Computer Science
Predmet:
ISSN:1002-137X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:To address the problems of low solution accuracy and slow convergence speed of equilibrium optimizer, a bidirectional learning equilibrium optimizer combining sparrow search and random difference is presented.Firstly, an adaptive population division strategy based on sparrow search algorithm is proposed to balance the global exploration and local exploitation of the algorithm, so as to improve the convergence accuracy and convergence speed of the algorithm.Secondly, a random difference strategy is introduced to reconstruct the equilibrium pool and to increase the information exchange between individuals, so as to facilitate the algorithm to jump out of the local optimum.Finally, a bidirectional chaotic opposition learning strategy is designed and applied to the updated population to increase the population diversity and hence to further improve the convergence accuracy of the algorithm.Simulation experiments are conducted with 14 test functions, the performance of algorithm is evaluated using Wilcoxon rank-su
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1002-137X
DOI:10.11896/jsjkx.221100143