Variational Continuous Bayesian Meta-learning Based Algorithm for Recommendation

Meta-learning methods have been introduced into recommendation algorithms in recent years to alleviate the problem of cold start.The existing meta-learning algorithms can only improve the ability of the algorithm to deal with a set of statically distributed data sets(tasks).When faced with multiple...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Ji suan ji ke xue Ročník 50; číslo 7; s. 66 - 71
Hlavní autori: Zhu, Wentao, Liu, Wei, Liang, Shangsong, Zhu, Huaijie, Yin, Jian
Médium: Journal Article
Jazyk:Chinese
Vydavateľské údaje: Chongqing Guojia Kexue Jishu Bu 01.07.2023
Editorial office of Computer Science
Predmet:
ISSN:1002-137X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Meta-learning methods have been introduced into recommendation algorithms in recent years to alleviate the problem of cold start.The existing meta-learning algorithms can only improve the ability of the algorithm to deal with a set of statically distributed data sets(tasks).When faced with multiple data sets subject to non-stationary distribution, the existing models often have negative knowledge transfer and catastrophic forgetting problems, resulting in a significant decline in algorithm recommendation performance.This paper explores a recommendation algorithm based on variational continuous Bayesian Meta-learning(VC-BML).Firstly, the algorithm assumes that the meta parameters follow the dynamic mixed Gaussian model, which makes it have a larger parameter space, improves the ability of the model to adapt to different tasks, and alleviates the problem of negative knowledge transfer.Then, the number of task clusters in VC-BML is flexibly determined by Chinese restaurant process(CRP),which enables the model to
AbstractList Meta-learning methods have been introduced into recommendation algorithms in recent years to alleviate the problem of cold start.The existing meta-learning algorithms can only improve the ability of the algorithm to deal with a set of statically distributed data sets(tasks).When faced with multiple data sets subject to non-stationary distribution,the existing models often have negative knowledge transfer and catastrophic forgetting problems,resulting in a significant decline in algorithm recommendation performance.This paper explores a recommendation algorithm based on variational continuous Bayesian Meta-learning(VC-BML).Firstly,the algorithm assumes that the meta parameters follow the dynamic mixed Gaussian model,which makes it have a larger parameter space,improves the ability of the model to adapt to different tasks,and alleviates the problem of negative knowledge transfer.Then,the number of task clusters in VC-BML is flexibly determined by Chinese restaurant process(CRP),which enables the model to store
Meta-learning methods have been introduced into recommendation algorithms in recent years to alleviate the problem of cold start.The existing meta-learning algorithms can only improve the ability of the algorithm to deal with a set of statically distributed data sets(tasks).When faced with multiple data sets subject to non-stationary distribution, the existing models often have negative knowledge transfer and catastrophic forgetting problems, resulting in a significant decline in algorithm recommendation performance.This paper explores a recommendation algorithm based on variational continuous Bayesian Meta-learning(VC-BML).Firstly, the algorithm assumes that the meta parameters follow the dynamic mixed Gaussian model, which makes it have a larger parameter space, improves the ability of the model to adapt to different tasks, and alleviates the problem of negative knowledge transfer.Then, the number of task clusters in VC-BML is flexibly determined by Chinese restaurant process(CRP),which enables the model to
Author Zhu, Huaijie
Yin, Jian
Zhu, Wentao
Liu, Wei
Liang, Shangsong
Author_xml – sequence: 1
  givenname: Wentao
  surname: Zhu
  fullname: Zhu, Wentao
– sequence: 2
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
– sequence: 3
  givenname: Shangsong
  surname: Liang
  fullname: Liang, Shangsong
– sequence: 4
  givenname: Huaijie
  surname: Zhu
  fullname: Zhu, Huaijie
– sequence: 5
  givenname: Jian
  surname: Yin
  fullname: Yin, Jian
BookMark eNotkD1PwzAURT0UiVK6M0ZiTrGfkzgZS8VHpSIQqhBb9GK_FJfULnYq0X9P1KI7XN0znOFesZHzjhi7EXwmRFkVd9u4_f6dAfCKcwH5iI0F55AKqT4v2TRG23CQRTZEjNnbBwaLvfUOu2ThXW_dwR9ico9HihZd8kI9ph1hcNZtBhzJJPNu44Ptv3ZJ60PyTtrvduTMSXPNLlrsIk3_e8LWjw_rxXO6en1aLuar1FQZpFKZAjUYUVKZSVCUVVo1fBiqBG2ISCFUXHCFJYpc8FIZAUoboYWBXMgJW561xuO23ge7w3CsPdr6BHzY1Bh6qzuqsdEVQY4goc0KTQiFkajavCyoqfJicN2eXfvgfw4U-3rrD2E4JNZQyiznIqtA_gHoP2uD
ContentType Journal Article
Copyright Copyright Guojia Kexue Jishu Bu 2023
Copyright_xml – notice: Copyright Guojia Kexue Jishu Bu 2023
DBID 7SC
8FD
JQ2
L7M
L~C
L~D
DOA
DOI 10.11896/jsjkx.220900125
DatabaseName Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 71
ExternalDocumentID oai_doaj_org_article_abc9e25a232f46cea26d3a7f586eb956
GroupedDBID -0Y
5XA
5XJ
7SC
8FD
92H
92I
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CUBFJ
CW9
GROUPED_DOAJ
JQ2
L7M
L~C
L~D
TCJ
TGT
U1G
U5S
ID FETCH-LOGICAL-d942-37d6ac2d18e84327e49c7b0e84782cdeee7a290107a8a151087d127cd1c1d2513
IEDL.DBID DOA
ISSN 1002-137X
IngestDate Fri Oct 03 12:43:52 EDT 2025
Mon Jun 30 03:05:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 7
Language Chinese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d942-37d6ac2d18e84327e49c7b0e84782cdeee7a290107a8a151087d127cd1c1d2513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/abc9e25a232f46cea26d3a7f586eb956
PQID 2834501492
PQPubID 2048282
PageCount 6
ParticipantIDs doaj_primary_oai_doaj_org_article_abc9e25a232f46cea26d3a7f586eb956
proquest_journals_2834501492
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Chongqing
PublicationPlace_xml – name: Chongqing
PublicationTitle Ji suan ji ke xue
PublicationYear 2023
Publisher Guojia Kexue Jishu Bu
Editorial office of Computer Science
Publisher_xml – name: Guojia Kexue Jishu Bu
– name: Editorial office of Computer Science
SSID ssib023646461
ssib051375750
ssib001164759
ssj0057673
Score 2.3442702
Snippet Meta-learning methods have been introduced into recommendation algorithms in recent years to alleviate the problem of cold start.The existing meta-learning...
SourceID doaj
proquest
SourceType Open Website
Aggregation Database
StartPage 66
SubjectTerms Algorithms
Bayesian analysis
Datasets
Knowledge management
Machine learning
Mathematical models
Parameter robustness
recommendation algorithm|cold-start problem|meta-learning|dynamic gaussian mixture model
Recommender systems
Title Variational Continuous Bayesian Meta-learning Based Algorithm for Recommendation
URI https://www.proquest.com/docview/2834501492
https://doaj.org/article/abc9e25a232f46cea26d3a7f586eb956
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1002-137X
  databaseCode: DOA
  dateStart: 20210101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0057673
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxcDCG1EoyANraOIkfowtArFQdahQt8iv9AFtUZMi4NdzThxRiYGFJVKcSFHu4rvvcvb3IXTDlYQLWgZcS1egSJhzVOnAbboG9J9DyueV2AQbDPh4LIZbUl9uTVhND1wbriuVFpakEjJ_nlBtJaEmlixPObUKwL2LviETW8VUBQQcTdZPonYs6XSLOC2NYgY4JWxiNoBuVi_Fd1IfMRs3DU0uaHdezF8-bgkJhcMGqSf3_xW7q4T0cIj2PZLEvfoNjtDO1_QYHTQqDdhP2hM0fIZy2P_yw46MarbcQLmP-_LTuh2U-MmWMvDqERMYLqzBvdfJaj0rpwsMoBa7GnWxsF5_6RSNHu5Hd4-B11EIjEgIhBBDpSYm4pYnMWE2EZqpEE4AHWhjrWXSdVNDJrkEABByZiLCtIl0ZAD-xGeotVwt7TnCSseKGMjoVsmESDjyJKeawk0AK7hpo76zTfZWM2Vkjru6GgCPZt6j2V8ebaNOY9nMT6giAxSUuBaoIBf_8YxLtOd04-t1tx3UKtcbe4V29Xs5K9bX1bf0DTA_yj0
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+Continuous+Bayesian+Meta-learning+Based+Algorithm+for+Recommendation&rft.jtitle=Ji+suan+ji+ke+xue&rft.au=ZHU+Wentao%2C+LIU+Wei%2C+LIANG+Shangsong%2C+ZHU+Huaijie%2C+YIN+Jian&rft.date=2023-07-01&rft.pub=Editorial+office+of+Computer+Science&rft.issn=1002-137X&rft.volume=50&rft.issue=7&rft.spage=66&rft.epage=71&rft_id=info:doi/10.11896%2Fjsjkx.220900125&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_abc9e25a232f46cea26d3a7f586eb956
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1002-137X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1002-137X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1002-137X&client=summon