Genetic Algorithms for a Parameter Estimation of a Fermentation Process Model: A Comparison

In this paper the problem of a parameter estimation using genetic algorithms is examined. A case study considering the estimation of 6 parameters of a nonlinear dynamic model of E. coli fermentation is presented as a test problem. The parameter estimation problem is stated as a nonlinear programming...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Bioautomation Ročník 3; číslo 1; s. 19 - 28
Hlavný autor: Roeva, Olympia
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Sophia Bulgarska Akademiya na Naukite / Bulgarian Academy of Sciences 01.12.2005
Academic Publishing House
Predmet:
ISSN:1314-1902, 1313-261X, 1314-2321, 1312-451X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper the problem of a parameter estimation using genetic algorithms is examined. A case study considering the estimation of 6 parameters of a nonlinear dynamic model of E. coli fermentation is presented as a test problem. The parameter estimation problem is stated as a nonlinear programming problem subject to nonlinear differential-algebraic constraints. This problem is known to be frequently ill-conditioned and multimodal. Thus, traditional (gradient-based) local optimization methods fail to arrive satisfied solutions. To overcome their limitations, the use of different genetic algorithms as stochastic global optimization methods is explored. These algorithms are proved to be very suitable for the optimization of highly non-linear problems with many variables. Genetic algorithms can guarantee global optimality and robustness. These facts make them advantageous in use for parameter identification of fermentation models. A comparison between simple, modified and multi-population genetic algorithms is presented. The best result is obtained using the modified genetic algorithm. The considered algorithms converged very closely to the cost value but the modified algorithm is in times faster than other two.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1314-1902
1313-261X
1314-2321
1312-451X