FASIMU: flexible software for flux-balance computation series in large metabolic networks

Background Flux-balance analysis based on linear optimization is widely used to compute metabolic fluxes in large metabolic networks and gains increasingly importance in network curation and structural analysis. Thus, a computational tool flexible enough to realize a wide variety of FBA algorithms a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:BMC bioinformatics Ročník 12; číslo 1; s. 28
Hlavní autori: Hoppe, Andreas, Hoffmann, Sabrina, Gerasch, Andreas, Gille, Christoph, Holzhütter, Hermann-Georg
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London BioMed Central 22.01.2011
BioMed Central Ltd
Springer Nature B.V
BMC
Predmet:
ISSN:1471-2105, 1471-2105
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Background Flux-balance analysis based on linear optimization is widely used to compute metabolic fluxes in large metabolic networks and gains increasingly importance in network curation and structural analysis. Thus, a computational tool flexible enough to realize a wide variety of FBA algorithms and able to handle batch series of flux-balance optimizations is of great benefit. Results We present FASIMU, a command line oriented software for the computation of flux distributions using a variety of the most common FBA algorithms, including the first available implementation of (i) weighted flux minimization, (ii) fitness maximization for partially inhibited enzymes, and (iii) of the concentration-based thermodynamic feasibility constraint. It allows batch computation with varying objectives and constraints suited for network pruning, leak analysis, flux-variability analysis, and systematic probing of metabolic objectives for network curation. Input and output supports SBML. FASIMU can work with free (lp_solve and GLPK) or commercial solvers (CPLEX, LINDO). A new plugin (faBiNA) for BiNA allows to conveniently visualize calculated flux distributions. The platform-independent program is an open-source project, freely available under GNU public license at http://www.bioinformatics.org/fasimu including manual, tutorial, and plugins. Conclusions We present a flux-balance optimization program whose main merits are the implementation of thermodynamics as a constraint, batch series of computations, free availability of sources, choice on various external solvers, and the flexibility on metabolic objectives and constraints.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1471-2105
1471-2105
DOI:10.1186/1471-2105-12-28