ROASMI: accelerating small molecule identification by repurposing retention data

The limited replicability of retention data hinders its application in untargeted metabolomics for small molecule identification. While retention order models hold promise in addressing this issue, their predictive reliability is limited by uncertain generalizability. Here, we present the ROASMI mod...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of cheminformatics Ročník 17; číslo 1; s. 20 - 15
Hlavní autoři: Sun, Fang-Yuan, Yin, Ying-Hao, Liu, Hui-Jun, Shen, Lu-Na, Kang, Xiu-Lin, Xin, Gui-Zhong, Liu, Li-Fang, Zheng, Jia-Yi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 14.02.2025
BioMed Central Ltd
Springer Nature B.V
BMC
Témata:
ISSN:1758-2946, 1758-2946
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The limited replicability of retention data hinders its application in untargeted metabolomics for small molecule identification. While retention order models hold promise in addressing this issue, their predictive reliability is limited by uncertain generalizability. Here, we present the ROASMI model, which enables reliable prediction of retention order within a well-defined application domain by coupling data-driven molecular representation and mechanistic insights. The generalizability of ROASMI is proven by 71 independent reversed-phase liquid chromatography (RPLC) datasets. The application of ROASMI to four real-world datasets demonstrates its advantages in distinguishing coexisting isomers with similar fragmentation patterns and in annotating detection peaks without informative spectra. ROASMI is flexible enough to be retrained with user-defined reference sets and is compatible with other MS/MS scorers, making further improvements in small-molecule identification.  Scientific Contribution Our work discovers the dependence of buffer pH on the replicability of retention sequences in RPLC systems. Building upon this mechanistic insight, we have constructed a generalizability-oriented retention order prediction model called ROASMI, which is capable of providing reliable predictions across heterogeneous datasets with diverse chromatographic and chemical spaces.
AbstractList The limited replicability of retention data hinders its application in untargeted metabolomics for small molecule identification. While retention order models hold promise in addressing this issue, their predictive reliability is limited by uncertain generalizability. Here, we present the ROASMI model, which enables reliable prediction of retention order within a well-defined application domain by coupling data-driven molecular representation and mechanistic insights. The generalizability of ROASMI is proven by 71 independent reversed-phase liquid chromatography (RPLC) datasets. The application of ROASMI to four real-world datasets demonstrates its advantages in distinguishing coexisting isomers with similar fragmentation patterns and in annotating detection peaks without informative spectra. ROASMI is flexible enough to be retrained with user-defined reference sets and is compatible with other MS/MS scorers, making further improvements in small-molecule identification.  Our work discovers the dependence of buffer pH on the replicability of retention sequences in RPLC systems. Building upon this mechanistic insight, we have constructed a generalizability-oriented retention order prediction model called ROASMI, which is capable of providing reliable predictions across heterogeneous datasets with diverse chromatographic and chemical spaces.
The limited replicability of retention data hinders its application in untargeted metabolomics for small molecule identification. While retention order models hold promise in addressing this issue, their predictive reliability is limited by uncertain generalizability. Here, we present the ROASMI model, which enables reliable prediction of retention order within a well-defined application domain by coupling data-driven molecular representation and mechanistic insights. The generalizability of ROASMI is proven by 71 independent reversed-phase liquid chromatography (RPLC) datasets. The application of ROASMI to four real-world datasets demonstrates its advantages in distinguishing coexisting isomers with similar fragmentation patterns and in annotating detection peaks without informative spectra. ROASMI is flexible enough to be retrained with user-defined reference sets and is compatible with other MS/MS scorers, making further improvements in small-molecule identification. 
The limited replicability of retention data hinders its application in untargeted metabolomics for small molecule identification. While retention order models hold promise in addressing this issue, their predictive reliability is limited by uncertain generalizability. Here, we present the ROASMI model, which enables reliable prediction of retention order within a well-defined application domain by coupling data-driven molecular representation and mechanistic insights. The generalizability of ROASMI is proven by 71 independent reversed-phase liquid chromatography (RPLC) datasets. The application of ROASMI to four real-world datasets demonstrates its advantages in distinguishing coexisting isomers with similar fragmentation patterns and in annotating detection peaks without informative spectra. ROASMI is flexible enough to be retrained with user-defined reference sets and is compatible with other MS/MS scorers, making further improvements in small-molecule identification.  Scientific Contribution Our work discovers the dependence of buffer pH on the replicability of retention sequences in RPLC systems. Building upon this mechanistic insight, we have constructed a generalizability-oriented retention order prediction model called ROASMI, which is capable of providing reliable predictions across heterogeneous datasets with diverse chromatographic and chemical spaces.
Abstract The limited replicability of retention data hinders its application in untargeted metabolomics for small molecule identification. While retention order models hold promise in addressing this issue, their predictive reliability is limited by uncertain generalizability. Here, we present the ROASMI model, which enables reliable prediction of retention order within a well-defined application domain by coupling data-driven molecular representation and mechanistic insights. The generalizability of ROASMI is proven by 71 independent reversed-phase liquid chromatography (RPLC) datasets. The application of ROASMI to four real-world datasets demonstrates its advantages in distinguishing coexisting isomers with similar fragmentation patterns and in annotating detection peaks without informative spectra. ROASMI is flexible enough to be retrained with user-defined reference sets and is compatible with other MS/MS scorers, making further improvements in small-molecule identification. 
The limited replicability of retention data hinders its application in untargeted metabolomics for small molecule identification. While retention order models hold promise in addressing this issue, their predictive reliability is limited by uncertain generalizability. Here, we present the ROASMI model, which enables reliable prediction of retention order within a well-defined application domain by coupling data-driven molecular representation and mechanistic insights. The generalizability of ROASMI is proven by 71 independent reversed-phase liquid chromatography (RPLC) datasets. The application of ROASMI to four real-world datasets demonstrates its advantages in distinguishing coexisting isomers with similar fragmentation patterns and in annotating detection peaks without informative spectra. ROASMI is flexible enough to be retrained with user-defined reference sets and is compatible with other MS/MS scorers, making further improvements in small-molecule identification.
The limited replicability of retention data hinders its application in untargeted metabolomics for small molecule identification. While retention order models hold promise in addressing this issue, their predictive reliability is limited by uncertain generalizability. Here, we present the ROASMI model, which enables reliable prediction of retention order within a well-defined application domain by coupling data-driven molecular representation and mechanistic insights. The generalizability of ROASMI is proven by 71 independent reversed-phase liquid chromatography (RPLC) datasets. The application of ROASMI to four real-world datasets demonstrates its advantages in distinguishing coexisting isomers with similar fragmentation patterns and in annotating detection peaks without informative spectra. ROASMI is flexible enough to be retrained with user-defined reference sets and is compatible with other MS/MS scorers, making further improvements in small-molecule identification.The limited replicability of retention data hinders its application in untargeted metabolomics for small molecule identification. While retention order models hold promise in addressing this issue, their predictive reliability is limited by uncertain generalizability. Here, we present the ROASMI model, which enables reliable prediction of retention order within a well-defined application domain by coupling data-driven molecular representation and mechanistic insights. The generalizability of ROASMI is proven by 71 independent reversed-phase liquid chromatography (RPLC) datasets. The application of ROASMI to four real-world datasets demonstrates its advantages in distinguishing coexisting isomers with similar fragmentation patterns and in annotating detection peaks without informative spectra. ROASMI is flexible enough to be retrained with user-defined reference sets and is compatible with other MS/MS scorers, making further improvements in small-molecule identification.
The limited replicability of retention data hinders its application in untargeted metabolomics for small molecule identification. While retention order models hold promise in addressing this issue, their predictive reliability is limited by uncertain generalizability. Here, we present the ROASMI model, which enables reliable prediction of retention order within a well-defined application domain by coupling data-driven molecular representation and mechanistic insights. The generalizability of ROASMI is proven by 71 independent reversed-phase liquid chromatography (RPLC) datasets. The application of ROASMI to four real-world datasets demonstrates its advantages in distinguishing coexisting isomers with similar fragmentation patterns and in annotating detection peaks without informative spectra. ROASMI is flexible enough to be retrained with user-defined reference sets and is compatible with other MS/MS scorers, making further improvements in small-molecule identification.  Keywords: Metabolomics, Retention order, Small-molecule identification, Replicability, Deep learning
The limited replicability of retention data hinders its application in untargeted metabolomics for small molecule identification. While retention order models hold promise in addressing this issue, their predictive reliability is limited by uncertain generalizability. Here, we present the ROASMI model, which enables reliable prediction of retention order within a well-defined application domain by coupling data-driven molecular representation and mechanistic insights. The generalizability of ROASMI is proven by 71 independent reversed-phase liquid chromatography (RPLC) datasets. The application of ROASMI to four real-world datasets demonstrates its advantages in distinguishing coexisting isomers with similar fragmentation patterns and in annotating detection peaks without informative spectra. ROASMI is flexible enough to be retrained with user-defined reference sets and is compatible with other MS/MS scorers, making further improvements in small-molecule identification. Scientific Contribution Our work discovers the dependence of buffer pH on the replicability of retention sequences in RPLC systems. Building upon this mechanistic insight, we have constructed a generalizability-oriented retention order prediction model called ROASMI, which is capable of providing reliable predictions across heterogeneous datasets with diverse chromatographic and chemical spaces.
Audience Academic
Author Kang, Xiu-Lin
Xin, Gui-Zhong
Shen, Lu-Na
Sun, Fang-Yuan
Zheng, Jia-Yi
Yin, Ying-Hao
Liu, Li-Fang
Liu, Hui-Jun
Author_xml – sequence: 1
  givenname: Fang-Yuan
  surname: Sun
  fullname: Sun, Fang-Yuan
  organization: State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University
– sequence: 2
  givenname: Ying-Hao
  surname: Yin
  fullname: Yin, Ying-Hao
  organization: State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine
– sequence: 3
  givenname: Hui-Jun
  surname: Liu
  fullname: Liu, Hui-Jun
  organization: State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University
– sequence: 4
  givenname: Lu-Na
  surname: Shen
  fullname: Shen, Lu-Na
  organization: State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University
– sequence: 5
  givenname: Xiu-Lin
  surname: Kang
  fullname: Kang, Xiu-Lin
  organization: State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University
– sequence: 6
  givenname: Gui-Zhong
  surname: Xin
  fullname: Xin, Gui-Zhong
  email: xinguizhong1984@126.com
  organization: State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University
– sequence: 7
  givenname: Li-Fang
  surname: Liu
  fullname: Liu, Li-Fang
  email: liulifang69@126.com
  organization: State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University
– sequence: 8
  givenname: Jia-Yi
  surname: Zheng
  fullname: Zheng, Jia-Yi
  email: zhengjy_cpu@163.com
  organization: State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39953609$$D View this record in MEDLINE/PubMed
BookMark eNptkktv1DAUhSNURB_wB1igSGxgkWLHsWOzQaOKx0hFRS2sLce-CR4l8dROEP333HQKzCCURSKfz8e5x-c0OxrDCFn2nJJzSqV4kyhjJS1IyQtClJCFfJSd0JrLolSVONr7Ps5OU9oQInhN6ifZMVOKM0HUSfbl-mp183n9NjfWQg_RTH7s8jSYvs-H0IOde8i9g3HyrbeohjFv7vII2zluQ1rgCNMio-DMZJ5mj1vTJ3j28D7Lvn14__XiU3F59XF9sbosHOdkKgylythWESdbTpy1xBEiCeXUqdJZwkzDHBDTgjSKcdq2-OutJIxCVUJr2Vm23vm6YDZ6G_1g4p0Oxuv7hRA7beLkbQ-6tpZbYSUBIaqmBGWlcwygqUpXKWjQ693Oazs3AziL40TTH5geKqP_rrvwQ-M1YLyco8OrB4cYbmdIkx58wkB7M0KYk2ZU1IxLripEX_6DbsIcR8xqoYQivCr3qM7gBH5sAx5sF1O9kiXeay2FQur8PxQ-DgZvsS2tx_WDDa8PNiAzwc-pM3NKen1zfci-2E_lTxy_y4MA2wEJpbGD-HcSSpZshN5VVGNF9X1FtWS_AJF719A
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
COPYRIGHT 2025 BioMed Central Ltd.
Copyright Springer Nature B.V. Dec 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: COPYRIGHT 2025 BioMed Central Ltd.
– notice: Copyright Springer Nature B.V. Dec 2025
– notice: The Author(s) 2025 2025
DBID C6C
NPM
ISR
3V.
7QO
7X7
7XB
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
LK8
M0S
M7P
P5Z
P62
P64
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s13321-025-00968-8
DatabaseName Springer Nature OA Free Journals
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Biological Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList



PubMed
MEDLINE - Academic


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1758-2946
EndPage 15
ExternalDocumentID oai_doaj_org_article_7cc5c6c80e664b2e9c8dd3eeb42d49eb
PMC11829455
A827587869
39953609
10_1186_s13321_025_00968_8
Genre Journal Article
GeographicLocations Mississippi
GeographicLocations_xml – name: Mississippi
GrantInformation_xml – fundername: Jiangsu Funding Program for Excellent Postdoctoral Talent
  grantid: 286396
– fundername: China Postdoctoral Science Foundation
  grantid: 2022M723516
– fundername: National Natural Science Foundation of China
  grantid: 82274064; No. 82374026; 82204591
– fundername: National Natural Science Foundation of China
  grantid: No. 82374026
– fundername: National Natural Science Foundation of China
  grantid: 82274064
– fundername: National Natural Science Foundation of China
  grantid: 82204591
GroupedDBID 0R~
29K
2WC
4.4
40G
53G
5VS
7X7
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKKN
AAKPC
AASML
ABDBF
ABEEZ
ABJCF
ABUWG
ACACY
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ACULB
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFGXO
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C24
C6C
CCPQU
D-I
D1I
DIK
E3Z
EBLON
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IGS
IHR
ISR
ITC
KB.
KQ8
LK8
M7P
MK0
M~E
O5R
O5S
OK1
P62
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RBZ
RNS
RPM
RVI
SOJ
SPH
TR2
TUS
U2A
UKHRP
-5F
-5G
-A0
-BR
3V.
ADINQ
FRP
NPM
RSV
AFFHD
PQGLB
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-d550t-a119acf90d8f50dcc0d0080151d92dc03ab3de0afe8a9351ff570f8031e42efc3
IEDL.DBID C24
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001421302200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1758-2946
IngestDate Tue Oct 14 19:05:40 EDT 2025
Tue Nov 04 02:06:26 EST 2025
Fri Sep 05 08:29:34 EDT 2025
Sat Oct 18 23:54:10 EDT 2025
Tue Nov 11 10:51:17 EST 2025
Tue Nov 04 18:14:32 EST 2025
Thu Nov 13 15:59:29 EST 2025
Wed Feb 19 01:28:37 EST 2025
Thu May 22 04:38:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Metabolomics
Small-molecule identification
Retention order
Replicability
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d550t-a119acf90d8f50dcc0d0080151d92dc03ab3de0afe8a9351ff570f8031e42efc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1186/s13321-025-00968-8
PMID 39953609
PQID 3166905424
PQPubID 54992
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_7cc5c6c80e664b2e9c8dd3eeb42d49eb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11829455
proquest_miscellaneous_3167358594
proquest_journals_3166905424
gale_infotracmisc_A827587869
gale_infotracacademiconefile_A827587869
gale_incontextgauss_ISR_A827587869
pubmed_primary_39953609
springer_journals_10_1186_s13321_025_00968_8
PublicationCentury 2000
PublicationDate 2025-02-14
PublicationDateYYYYMMDD 2025-02-14
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-14
  day: 14
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: England
– name: London
PublicationTitle Journal of cheminformatics
PublicationTitleAbbrev J Cheminform
PublicationTitleAlternate J Cheminform
PublicationYear 2025
Publisher Springer International Publishing
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: Springer International Publishing
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
SSID ssj0065707
Score 2.354857
Snippet The limited replicability of retention data hinders its application in untargeted metabolomics for small molecule identification. While retention order models...
Abstract The limited replicability of retention data hinders its application in untargeted metabolomics for small molecule identification. While retention...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 20
SubjectTerms Analysis
Chemistry
Chemistry and Materials Science
Computational Biology/Bioinformatics
Computer Applications in Chemistry
Coupling (molecular)
Datasets
Deep learning
Documentation and Information in Chemistry
Improving Reproducibility and Reusability in the Journal of Cheminformatics
Isomers
Liquid chromatography
Metabolomics
Molecular modelling
Prediction models
Predictions
Replicability
Retention
Retention order
Sequences
Small-molecule identification
Theoretical and Computational Chemistry
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQhQQXxJtAQQEhcSGqYzuJzW2pqOiBUrUg9WY5Hrus1GarzW6l_ntmnGxpyoELtyieRM48PDPO5xnG3kutAEqIhZYuFspw2miKUGioWu1kDZWJqdlEc3CgT07M4Y1WX4QJG8oDD4zbabyvfO01D3WtWhGM1wAyhFYJUCa0tPryxmySqWENJjxHszkio-udHjMxgWmzqAqK2XWhxxL9fy_ENzzRbZTkrV-lyQPtPWQPxtAxnw1TfsTuhO4xu7e76dj2hB0efZ8df9v_lDvv0ZuQbLvTvD93Z2f5-dAGN-RzGPFBSSR5e5UvwwVye0GbBni9GvCPOUFHn7Kfe19-7H4txo4JBWCmsSpcWRrno-GgY8XBew4UEqJXByPAc-laCYG7GLQzsipjREZFjYYdlAjRy2dsq1t04QXLOeALQFTOCa9AQouRVoiaWpJTkcA2Y5-JgfZiKIphqUx1uoHCs6Pw7L-El7F3xH5LhSg6QrqcunXf2_3jIzvTAlOZRtcmYx9GorhAQXg3HhzAeVLtqgnl9oQS2e-nwxsp29FSeyvLujYYtwqVsbfXw_Qkoc-6sFgnmkZiXmWQ5vmgFNffTUeDZc3x5XqiLhPGTEe6-a9Ux5tyO6OqKmMfN5r1Z14pOdO1HVTXourapLpWv_wfnH_F7otkDqIo1TbbWi3X4TW76y9X8375JhnTbzRMJhk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDI9gIMHL-BwcDFQQEi9Ua5O0TXhBx8TEHhinDaS9RWmcHCdt7e16h8R_T5ymGx0SL7xVjRs1sePYzi82IW-Y4AA5uFQw7VIuMww0OUgFFLXQrIRCulBsojo6EqenchYDbl2EVQ46MShqaA3GyPdYXnpHruCUf1hepFg1Ck9XYwmNm-QWZkmgAbo3GzQxojqq4aKMKPc6749R7zzTIkXLXaQiJur_Wx3_sR9dx0peOzAN-9DBvf8dwX2yHS3QZNqLzANywzYPyZ39ofDbIzI7_jo9-XL4PtHG-E0JRaSZJ925PjtLzvtqujZZQIQZBc4m9a9kZZeeaS3GHvzzuodRJohAfUy-H3z6tv85jYUXUvAOyzrVeS61cTID4YoMjMkALUtvHICkYDKmawY2084KLVmRO-dn2gmvHyyn1hm2Q7aatrFPSZKB7wBooTU1HBjU3mCzTmBlc8w1WE_IR-SAWva5NRRmuw4v2tVcxcWjKmMKUxqR2bLkNbXSCABmbc0pcGl9J6-RfwrzWTQImJnrTdepw5NjNRXUe0SVKOWEvI1ErvWcNDreP_D_iSmwRpS7I0o__WbcPPBXxQXfqSvmTsiry2b8EkFsjW03gaZi3j2TnuZJL1WX48YbxqzMfOdiJG-jiRm3NIsfIR04uoiSF8WEvBtE8-q_go8nStXLvvKyr4LsK_Hs38N4Tu7SsFJomvNdsrVebewLctv8XC-61cuwzn4DgdUydQ
  priority: 102
  providerName: ProQuest
Title ROASMI: accelerating small molecule identification by repurposing retention data
URI https://link.springer.com/article/10.1186/s13321-025-00968-8
https://www.ncbi.nlm.nih.gov/pubmed/39953609
https://www.proquest.com/docview/3166905424
https://www.proquest.com/docview/3167358594
https://pubmed.ncbi.nlm.nih.gov/PMC11829455
https://doaj.org/article/7cc5c6c80e664b2e9c8dd3eeb42d49eb
Volume 17
WOSCitedRecordID wos001421302200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: Open Access: BioMedCentral Open Access Titles
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: RBZ
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: M7P
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: KB.
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: P5Z
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: 7X7
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: PIMPY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: C24
  dateStart: 20090112
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbYXSS48H4UliogJC5kSew8bG5t1RUV2hJ1QSpcLMePUmk3XTUtEhd-OzNOstCFC1ysqp5Yjv3ZnnG-mSHkJeOJMbFxIWfKhYmI8KLJmZCbtOSKZSYVziebyKdTPp-LonUKqzu2e_dJ0u_Uflnz7E0N1hQF05emIerdPOR75CCNuUAi3wh9HJr9F7kceece89fn2vD8f27Cv51CVxmSVz6T-tPn-Pb_9fsOudVqm8Gggcddcs1W98iNUZfk7T4pZh8GpyeTt4HSGg4ghEO1COpzdXYWnDeZc22wNC2lyM9iUH4P1vYCJmiF9wzwe9NQJgNkmz4gn47HH0fvwjbJQmjAONmEKo6F0k5Ehrs0MlpHBrVIUASMoEZHTJXM2Eg5y5VgaewcjK_jsBfYhFqn2UOyX60q-5gEkYEGDE2VojoxzJSgnFnHMYs5xhUse2SI4y4vmjgaEiNb-z9W64VsF4rMtU51pnlksywpqRWaG8OsLRNqEmGhkRc4axJjV1RIjlmobV3LyelMDjgF6yfnmeiRV62QW8H8adX6GkA_MdzVjuThjiQMv96t7sAh28VdSxZnmQBVlyY98vyyGp9EwlplV1svkzMwxQTIPGqwdPne6E3Msgga5zso2xmY3Zpq-dWH_kZzUCRp2iOvO7D96pe353gmG8RJQJz0iJP8yb-JPyU3qccrDePkkOxv1lv7jFzX3zbLet0ne_k89yXvk4PheFrM-n4F9v2FBpTvh0d9JNEWWP4YQ1mkX0C2mJwUn38CkqwyDg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKFqlceD8WCgQE4kLUxI_ERkJoKVRdtVtWbZHKyTh-LCu1ybLZBfVP8Rvx5NGSInHrgVsUT6zY-WbGnzOeQegF4dSY2LiQE-VCKiLYaHIm5IZlXJHEMOGqYhPp3h4_OhLjFfSrPQsDYZWtTawMtSk07JFvkDjxRI5RTN_NvodQNQr-rrYlNGpY7NjTn56ylW-HH_z3fYnx1sfDze2wqSoQGr8aX4QqjoXSTkSGOxYZrSMDyybv-YzARkdEZcTYSDnLlSAsdo6lkeMe_JZi6zTx_V5BqxTA3kOr4-Fo_KW1_RBHkrZHc3iyUXoGiD1dxywErsBD3pQG-NsB_OEBL0ZnXvhFW3m-rRv_25zdRNebNXYwqJXiFlqx-W20ttmWtruDxvufBgej4ZtAae3dLihBPgnKE3V8HJzU9YJtMDVNIFWF3SA7DeZ25mFZwO6Kv17UgaIBxNjeRZ8vZUD3UC8vcvsABZHxHRjMlMKaGmIyvyS1jkPtdsimmPXRe_jiclZnD5GQz7u6UcwnsjEPMtWa6UTzyCYJzbAVmhtDrM0oNlRY38lzwIuEjB05hARN1LIs5fBgXw449pwv5Ynoo1eNkCs8crRqTlj494QkXx3J9Y6kn37dbW7xJBuTVspzMPXRs7NmeBLC9HJbLCuZlHgCKrzM_RrFZ-OGM9QkiXznvIPvzsR0W_LptyrhOZBgQRnro9etKpy_V8VieSJrXZNe12Sla5I__PcwnqK17cPRrtwd7u08QtdwpaU4jOk66i3mS_sYXdU_FtNy_qTR8gB9vWwl-Q3xo5Jw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQcCF92OhQEAgLkSb2HFiIyG0tFSsCsuqBaniYhw_lpXa7LLZBfWv8euYyaMlReLWA7conlixPZ_Hnz2eIeQpE4m1sfWhYNqHiYxwo8nbUFieC81Sy6Wvkk1ko5HY35fjNfKrvQuDbpXtnFhN1HZmcI-8z-IUiBxPaNL3jVvEeGv79fx7iBmk8KS1TadRq8iOO_oJ9K18NdyCsX5G6fbbT5vvwibDQGhhZb4MdRxLbbyMrPA8ssZEFpdQYAWtpNZETOfMukh7J7RkPPaeZ5EXAASXUOcNg3rPkfMZcEx0JxzzL60VQI-SrL2kI9J-CVyQAnGnPETWIELRJAn42xT8YQtP-2meOqytbOD21f-5966RK83KOxjUULlO1lxxg1zabBPe3STj3Y-DvQ_Dl4E2BowxQqOYBOWhPjgIDusswi6Y2sa9qtLoID8KFm4OyjrDPRd4XtbuowF63t4in8-kQbfJejEr3F0SRBYqsJRrTU1imc1hoeq8wIzuGGMx75E3OPpqXscUURjlu3oxW0xUM2mozBhuUiMil6ZJTp00wlrmXJ5Qm0gHlTxB3VEYx6PAMZ3oVVmq4d6uGggKTDATqeyR542Qn4EWGd3cu4D_xNBfHcmNjiR0v-kWt7qlmomuVCeK1SOPj4vxS3TeK9xsVclkDGipBJk7tUYftxtvVrM0gspFR9c7HdMtKabfqjDoSI1lwnmPvGhhcfJfFbcVqapxpwB3qsKdEvf-3YxH5CIgQ70fjnbuk8u0AiwN42SDrC8XK_eAXDA_ltNy8bCCe0C-njVCfgNvQpnT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ROASMI%3A+accelerating+small+molecule+identification+by+repurposing+retention+data&rft.jtitle=Journal+of+cheminformatics&rft.au=Sun%2C+Fang-Yuan&rft.au=Yin%2C+Ying-Hao&rft.au=Liu%2C+Hui-Jun&rft.au=Shen%2C+Lu-Na&rft.date=2025-02-14&rft.issn=1758-2946&rft.eissn=1758-2946&rft.volume=17&rft.issue=1&rft.spage=20&rft_id=info:doi/10.1186%2Fs13321-025-00968-8&rft_id=info%3Apmid%2F39953609&rft.externalDocID=39953609
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1758-2946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1758-2946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1758-2946&client=summon