The machine learning algorithm based on decision tree optimization for pattern recognition in track and field sports

This study aims to solve the problems of insufficient accuracy and low efficiency of the existing methods in sprint pattern recognition to optimize the training and competition strategies of athletes. Firstly, the data collected in this study come from high-precision sensors and computer simulation,...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 20; no. 2; p. e0317414
Main Authors: Cui, Guomei, Wang, Chuanjun
Format: Journal Article
Language:English
Published: United States Public Library of Science 13.02.2025
Public Library of Science (PLoS)
Subjects:
ISSN:1932-6203, 1932-6203
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This study aims to solve the problems of insufficient accuracy and low efficiency of the existing methods in sprint pattern recognition to optimize the training and competition strategies of athletes. Firstly, the data collected in this study come from high-precision sensors and computer simulation, involving key biomechanical parameters in sprint, such as step frequency, stride length and acceleration. The dataset covers multiple tests of multiple athletes, ensuring the diversity of samples. Secondly, an optimized machine learning algorithm based on decision tree is adopted. It combines the advantages of Random Forest (RF) and Gradient Boosting Tree (GBT), and improves the accuracy and efficiency of the model in sprint pattern recognition by adaptively adjusting the hyperparameter and tree structure. Specifically, by introducing adaptive feature selection and ensemble learning methods, the decision tree algorithm effectively improves the recognition ability of the model for different athletes and sports states, thus reducing the over-fitting phenomenon and improving the generalization ability. In the process of model training, cross-validation and grid search optimization methods are adopted to ensure the reasonable selection of super parameters. Moreover, the superiority of the model is verified by comparing with the commonly used algorithms such as Support Vector Machine (SVM) and Convolutional Neural Network (CNN). The accuracy rate on the test set is 94.9%, which is higher than that of SVM (87.0%) and CNN (92.0%). In addition, the optimized decision tree algorithm performs well in computational efficiency. However, the training data of this model comes from the simulation environment, which may deviate from the real game data. Future research can verify the generalization ability of the model through more actual data.
AbstractList This study aims to solve the problems of insufficient accuracy and low efficiency of the existing methods in sprint pattern recognition to optimize the training and competition strategies of athletes. Firstly, the data collected in this study come from high-precision sensors and computer simulation, involving key biomechanical parameters in sprint, such as step frequency, stride length and acceleration. The dataset covers multiple tests of multiple athletes, ensuring the diversity of samples. Secondly, an optimized machine learning algorithm based on decision tree is adopted. It combines the advantages of Random Forest (RF) and Gradient Boosting Tree (GBT), and improves the accuracy and efficiency of the model in sprint pattern recognition by adaptively adjusting the hyperparameter and tree structure. Specifically, by introducing adaptive feature selection and ensemble learning methods, the decision tree algorithm effectively improves the recognition ability of the model for different athletes and sports states, thus reducing the over-fitting phenomenon and improving the generalization ability. In the process of model training, cross-validation and grid search optimization methods are adopted to ensure the reasonable selection of super parameters. Moreover, the superiority of the model is verified by comparing with the commonly used algorithms such as Support Vector Machine (SVM) and Convolutional Neural Network (CNN). The accuracy rate on the test set is 94.9%, which is higher than that of SVM (87.0%) and CNN (92.0%). In addition, the optimized decision tree algorithm performs well in computational efficiency. However, the training data of this model comes from the simulation environment, which may deviate from the real game data. Future research can verify the generalization ability of the model through more actual data.
This study aims to solve the problems of insufficient accuracy and low efficiency of the existing methods in sprint pattern recognition to optimize the training and competition strategies of athletes. Firstly, the data collected in this study come from high-precision sensors and computer simulation, involving key biomechanical parameters in sprint, such as step frequency, stride length and acceleration. The dataset covers multiple tests of multiple athletes, ensuring the diversity of samples. Secondly, an optimized machine learning algorithm based on decision tree is adopted. It combines the advantages of Random Forest (RF) and Gradient Boosting Tree (GBT), and improves the accuracy and efficiency of the model in sprint pattern recognition by adaptively adjusting the hyperparameter and tree structure. Specifically, by introducing adaptive feature selection and ensemble learning methods, the decision tree algorithm effectively improves the recognition ability of the model for different athletes and sports states, thus reducing the over-fitting phenomenon and improving the generalization ability. In the process of model training, cross-validation and grid search optimization methods are adopted to ensure the reasonable selection of super parameters. Moreover, the superiority of the model is verified by comparing with the commonly used algorithms such as Support Vector Machine (SVM) and Convolutional Neural Network (CNN). The accuracy rate on the test set is 94.9%, which is higher than that of SVM (87.0%) and CNN (92.0%). In addition, the optimized decision tree algorithm performs well in computational efficiency. However, the training data of this model comes from the simulation environment, which may deviate from the real game data. Future research can verify the generalization ability of the model through more actual data.This study aims to solve the problems of insufficient accuracy and low efficiency of the existing methods in sprint pattern recognition to optimize the training and competition strategies of athletes. Firstly, the data collected in this study come from high-precision sensors and computer simulation, involving key biomechanical parameters in sprint, such as step frequency, stride length and acceleration. The dataset covers multiple tests of multiple athletes, ensuring the diversity of samples. Secondly, an optimized machine learning algorithm based on decision tree is adopted. It combines the advantages of Random Forest (RF) and Gradient Boosting Tree (GBT), and improves the accuracy and efficiency of the model in sprint pattern recognition by adaptively adjusting the hyperparameter and tree structure. Specifically, by introducing adaptive feature selection and ensemble learning methods, the decision tree algorithm effectively improves the recognition ability of the model for different athletes and sports states, thus reducing the over-fitting phenomenon and improving the generalization ability. In the process of model training, cross-validation and grid search optimization methods are adopted to ensure the reasonable selection of super parameters. Moreover, the superiority of the model is verified by comparing with the commonly used algorithms such as Support Vector Machine (SVM) and Convolutional Neural Network (CNN). The accuracy rate on the test set is 94.9%, which is higher than that of SVM (87.0%) and CNN (92.0%). In addition, the optimized decision tree algorithm performs well in computational efficiency. However, the training data of this model comes from the simulation environment, which may deviate from the real game data. Future research can verify the generalization ability of the model through more actual data.
Audience Academic
Author Cui, Guomei
Wang, Chuanjun
AuthorAffiliation University of Lagos Faculty of Engineering, NIGERIA
College of Physical Education, Shandong Sport University, Rizhao, China
AuthorAffiliation_xml – name: University of Lagos Faculty of Engineering, NIGERIA
– name: College of Physical Education, Shandong Sport University, Rizhao, China
Author_xml – sequence: 1
  givenname: Guomei
  surname: Cui
  fullname: Cui, Guomei
  organization: College of Physical Education, Shandong Sport University, Rizhao, China
– sequence: 2
  givenname: Chuanjun
  orcidid: 0009-0009-1648-2220
  surname: Wang
  fullname: Wang, Chuanjun
  organization: College of Physical Education, Shandong Sport University, Rizhao, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39946363$$D View this record in MEDLINE/PubMed
BookMark eNqNkl2L1DAUhousuB_6D0QLgujFjE2TJs2VLIsfAwsLunpb0uSkk7VNukkq6q833RllKnshucjhzXPe5Jyc0-zIOgtZ9hQVa4QZenPjJm9Fvx6TvC4wYgSRB9kJ4rhc0bLARwfxcXYawk1RVLim9FF2jDknFFN8ksXrLeSDkFtjIe9BeGtsl4u-c97E7ZC3IoDKnc0VSBNMCqIHyN0YzWB-iTgr2vl8FDGCt7kH6Tpr7nQzw0J-y4VVuTbQqzyMzsfwOHuoRR_gyX4_y768f3d98XF1efVhc3F-uVJVyeKqrDXRoJhUJVe8QoIhXWldirqoK8UlBkwZLzUhDJdUyVZznhoBpGqJYgLhs-z5znfsXWj2DQsNRpSmRFKSRGx2hHLiphm9GYT_2ThhmjvB-a4RPhrZQyM16JYxTiVWhCFoJRVFWfGCC6QUn73e7m-b2gGUBJuq7xemyxNrtk3nvjcI1SXhbHZ4tXfw7naCEJvBBAl9Lyy4afdwRjErioS--Ae9v7w91YlUgbHazR8ymzbndckwpzWrErW-h0pLwWBkGi9tkr5IeL1ISEyEH7ETUwjN5vOn_2evvi7ZlwfsFkQft8H10zxNYQk-O2z13x7_mWv8G_07-8E
ContentType Journal Article
Copyright Copyright: © 2025 Cui, Wang. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2025 Public Library of Science
2025 Cui, Wang. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 Cui, Wang 2025 Cui, Wang
2025 Cui, Wang. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2025 Cui, Wang. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2025 Public Library of Science
– notice: 2025 Cui, Wang. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 Cui, Wang 2025 Cui, Wang
– notice: 2025 Cui, Wang. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0317414
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Science in Context
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic


Agricultural Science Database

Database_xml – sequence: 1
  dbid: DOA
  name: DAOJ: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Pattern recognition in track and field sports
EISSN 1932-6203
ExternalDocumentID 3166679424
oai_doaj_org_article_cfefb7796c3d471ebc6a025909a1dd94
PMC11824974
A827396875
39946363
Genre Journal Article
Comparative Study
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
123
29O
2WC
3V.
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BBORY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CGR
CS3
CUY
CVF
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
ECM
EIF
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPNFZ
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
NPM
O5R
O5S
OK1
P2P
P62
PATMY
PDBOC
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RIG
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
AAWOE
AFPKN
PHGZM
PHGZT
ACCTH
AFFHD
BAIFH
BBTPI
OVT
PJZUB
PPXIY
PQGLB
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
ESTFP
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
PUEGO
5PM
ID FETCH-LOGICAL-d527t-28f4fed7cd29d951a71f5ff2a8085d9c3e36792f447326dcbf99031e45b4d7a13
IEDL.DBID M7P
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001445286500053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Wed Aug 13 01:19:51 EDT 2025
Mon Nov 10 04:30:40 EST 2025
Tue Nov 04 02:06:27 EST 2025
Mon Sep 08 12:08:34 EDT 2025
Tue Oct 07 08:22:59 EDT 2025
Sat Nov 29 13:51:23 EST 2025
Sat Nov 29 10:30:39 EST 2025
Wed Nov 26 10:45:17 EST 2025
Wed Nov 26 10:45:36 EST 2025
Thu May 22 21:24:04 EDT 2025
Sat Feb 22 01:20:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Copyright: © 2025 Cui, Wang. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d527t-28f4fed7cd29d951a71f5ff2a8085d9c3e36792f447326dcbf99031e45b4d7a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0009-0009-1648-2220
OpenAccessLink https://www.proquest.com/docview/3166679424?pq-origsite=%requestingapplication%
PMID 39946363
PQID 3166679424
PQPubID 1436336
PageCount e0317414
ParticipantIDs plos_journals_3166679424
doaj_primary_oai_doaj_org_article_cfefb7796c3d471ebc6a025909a1dd94
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11824974
proquest_miscellaneous_3166763700
proquest_journals_3166679424
gale_infotracmisc_A827396875
gale_infotracacademiconefile_A827396875
gale_incontextgauss_ISR_A827396875
gale_incontextgauss_IOV_A827396875
gale_healthsolutions_A827396875
pubmed_primary_39946363
PublicationCentury 2000
PublicationDate 2025-02-13
PublicationDateYYYYMMDD 2025-02-13
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-13
  day: 13
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2025
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
SSID ssj0053866
Score 2.4822366
Snippet This study aims to solve the problems of insufficient accuracy and low efficiency of the existing methods in sprint pattern recognition to optimize the...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e0317414
SubjectTerms Accuracy
Adaptive algorithms
Algorithms
Analysis
Artificial neural networks
Athletes
Biology and Life Sciences
Biomechanical Phenomena - physiology
Biomechanics
Classification
Computer and Information Sciences
Computer Simulation
Computer-generated environments
Convolutional Neural Networks
Data mining
Decision making
Decision trees
Efficiency
Engineering and Technology
Ensemble learning
Evaluation
Humans
Hunting
Learning algorithms
Machine Learning
Medicine and Health Sciences
Methods
Neural networks
Optimization
Parameters
Pattern recognition
Pattern Recognition, Automated - methods
Physical Sciences
Random Forest
Research and Analysis Methods
Runners (Sports)
Running - physiology
Sensors
Signal processing
Simulation methods
Sports
Sports injuries
Sprinting
Support Vector Machine
Support vector machines
Track & field
Track and Field - physiology
Vision systems
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQigMXRHk1sIBBSMAhbeJ4Y_tYEBVIqCAeVW-R48d2RTdZbbL8fmYcN2pQJThwjUdRMg_PZ3nmG0JeFmjlTLCUudylvPRZqmrsWJbaCWt8yUO1xekncXIiz87UlyujvrAmbKAHHhR3aLzztRCqNIWFjdTVptSQp1WmdG6tCkyggHouD1PDHgxRXJaxUa4Q-WG0y8GmbdwBuDGkUR5J-seteLa5aLvrcOaf5ZJX8s_xHXI7Akd6NHzwHrnhmrtkL4ZmR19H_ug390gPpqfrUCTpaJwKsaT6YtluV_35mmLisrRtqI3zdSjeTNMWNo917MqkAGXpJlBvNnSsMYLnKxTW5ifVjaWh-o2Gc3F3n_w4fv_93Yc0DldI7YKJPmXSc--sMJYpCzBLi9wvvGdaAgizyhSuKIVinnMBCM-a2kPeKnLHFzW3QufFAzJrQJ37hOJNJJfG4_wabmorpTMMaXGMrAF-LhLyFjVdbQb-jAoZrcMDsHMV7Vz9zc4JeYZ2qob20DEuqyMJAEyVcOxKyIsggawWDZbNLPWu66qPn0__Qejb14nQqyjkW1Sqjq0K8LvIljWRnE8kITbNZHkfvaqK_tdVBd7SwhbI4H_ml552_fLzcRlfiqVwjWt3gwwkBZFlCXk4OOaoWUCbSABXJEROXHai-ulKszoPpOJ40ORgx0f_w1iPyS2Gc5JxcE4xJ7N-u3NPyE3zq19126chVH8DZRJFkw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Public Library of Science (PLoS) Journals Open Access
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQwoELUF4NLGAQEnBIm9jeOD4WxAqkqlQ8qt4ix4_tim6y2mT5_cwkbiBVK8HVnkTJeMbzWZ75hpDXHFc5kSxmLnWxyHwSqxIrlnPtpDU-E122xcmhPDrKT0_V8Z-D4qUbfC7T_aDTvXVduT0wQdn1rb7JeJZhCtf8-PBi5wXfzbJQHnfdk4Gaf9iAJ-vzurkKXV5Okvwr6szv_u_33iN3Ar6kB71B7JAbrrpPdoIHN_RtoJl-94C0YCF01eVSOhqaRyyoPl_Um2V7tqIY3yytK2pDGx6KF9i0hj1mFYo3KSBeuu4YOis6pCLB-BKFtflJdWVplyRHu-Nz85D8mH_8_uFTHHowxHbGZBuz3AvvrDSWKQtoTMvUz7xnOgesZpXhjmdSMS-EBCBoTekhvPHUiVkprNQpf0QmFWhil1C8sBS58djmRpjS5rkzDNlzTF4CSp1F5D0uTbHuaTYKJL7uBkC7RfCjwnjnSylVZriFuOpKk2mAbSpROrVWiYi8wIUt-irSwX2LgxxwmsrgdBaRV50Ekl9UmF2z0NumKT5_OfkHoW9fR0JvgpCvUak6VDTA7yKp1khyOpIEFzaj6V00wyKYTlNwvMyFnZLB_0wvTPPq6ZfDNL4UM-YqV297GYgdMkki8ri35EGzAEqRJ45HJB_Z-Ej145lqedZxj-N5VMA6Prn-k5-S2wybJGPXHD4lk3azdc_ILfOrXTab553H_gbezkES
  priority: 102
  providerName: Public Library of Science
Title The machine learning algorithm based on decision tree optimization for pattern recognition in track and field sports
URI https://www.ncbi.nlm.nih.gov/pubmed/39946363
https://www.proquest.com/docview/3166679424
https://www.proquest.com/docview/3166763700
https://pubmed.ncbi.nlm.nih.gov/PMC11824974
https://doaj.org/article/cfefb7796c3d471ebc6a025909a1dd94
http://dx.doi.org/10.1371/journal.pone.0317414
Volume 20
WOSCitedRecordID wos001445286500053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DAOJ: Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (New)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdYxwMvwPhaYRSDkICHdE3ixs4TWqdVTNtK1EFVeIkSf3QVa1Kalr-fO9ctBE0IiZd7iC9R7Lvzne3z7wh5HaKUOzzwAu1rj0Wm48U53lgWmeZKmojZbIvROR8MxHgcJ27DrXJplZs50U7UqpS4R34Y4vkWKE_A3s-_e1g1Ck9XXQmNHbKLKAmhTd1LNjMx2HIUuetyIfcPnXTa87LQbVBmcKbMQfVvJ-TG_Lqsboo2_0ya_M0L9e_97__fJ3dd_EmP1gqzR27p4gHZcxZe0bcOhvrdQ7IEDaIzm2upqSsuMaHZ9QS-uryaUfR_ipYFVa5MD8UDblrCHDRzlzspRMR0bhE8C7pNVYLnU2TO5DeaFYraJDpql9fVI_K5f_Lp-IPnajR4qhvwpRcIw4xWXKogVhCtZdw3XWOCTEAsp2IZ6hB6HRjGOASKSuYG3F_oa9bNmeKZHz4mjQLksU8oHmgyIQ2WwWEyV0JoGSC6jhQ5RLHdJumhqNL5GoYjRWBs-6BcTFJnZ6k02uScx5EMFfhdncsog7Au7sSZr1TMmuQFCjpd3zLdmnd6JCCOiyNYvTXJK8uB4BgFZt9MslVVpacfR__AdDmsMb1xTKbEQc3cjQfoLoJu1TgPapxg4rLWvI9qmToFrtJfygRvbtTt5uaX22b8KGbUFbpcrXnAt_BOp0merDV7O7IQtCKOXNgkoqbztaGvtxTTK4tNjutVBnJ8-vf_ekbuBFhIGSvrhAeksVys9HNyW_5YTqtFi-zw4QjpmFsqgIpjv0V2eyeDZNiyGydA-8k50LNeG-hF56xlrd_SS6BJ9yu8kZxeJF9-Au3CX3M
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGQYIXYFy2wmAGgYCHbInjxskDQuMyrVopaBvV3jLHl65iTUrTgvhT_EbOSdxC0IR42QOv8Ylb2-d8_hyfCyFPQlxlXzCPmcB4PLK-l2QYsRxLI7SyEa-8LQY90e_Hx8fJxxXyYxELg26VC0ysgFoXCr-Rb4d4vwXKw_iryRcPq0bh7eqihEatFvvm-zc4spUvu29hfZ8ytvvu6M2e56oKeLrDxMxjseXWaKE0SzTwCykC27GWyRjYh05UaEL4HWY5F0BttMosAHYYGN7JuBYyCKHfS-Qy4HiALmTiYLBAfsCOKHLheaEItp02bE2K3GxBF7B5c1caYLkBtCZnRXkeu_3TSfO3XW_3xv82XzfJdcev6U5tEKtkxeS3yKpDsJI-d2m2X9wmM7AQOq58SQ11xTOGVJ4NYRSz0zHF_V3TIqfalSGieIFPC8DYsQtepcD46aTKUJrTpSsWPB-hsFSfqcw1rZwEafX5oLxDPl3I6O-SVg7rv04oXtjyWFks88NVpuPYKIbZg1ScAUvvtMlrVI10UqcZSTHxd_WgmA5ThyOpssZmQiSRCjXwCpOpSAJtTfxEBlonvE02UbHSOop2CV_pTgw8NYngdNomjysJTP6Ro3fRUM7LMu1-GPyD0OFBQ-iZE7IFTqp0ER0wXEwq1pDcaEgChKlG8zqaQeoMpkx_KS-8uVDv85sfLZuxU_QYzE0xr2Vg7xS-3yZrtSUtZxZIOebJC9skbthYY-qbLfnotMq9judxDut47-__a5Nc3Tt630t73f7-fXKNYdForCIUbpDWbDo3D8gV9XU2KqcPKwSh5OSiTfAnDMyv6w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGQYgXYNxWGMwgEPCQtXHcOHlAaGxUVJvKxGXaW3B86SrWpDQpiL_Gr-OcxA0ETYiXPfAan7i1_Z3Px_G5EPI4wFXuC-Yx4xuPh7bvxSlGLEfSCK1syCtvi6MDMR5Hx8fx4Rr5sYqFQbfKFSdWRK1zhd_IewHebwF4GO9Z5xZxuDd8Of_iYQUpvGldldOoIbJvvn-D41vxYrQHa_2EseHrD7tvPFdhwNMDJkqPRZZbo4XSLNZga0jh24G1TEZgiehYBSaA32SWcwFmjlapBfIOfMMHKddC-gH0e4FcFAGgGKPUdxv3EuCRMHSheoHwew4Z2_M8M9vQBWzk3JUJaDaDzvw0L86ydP902PxtBxxe-5_n7jq56uxuulMryjpZM9kNsu6YraDPXPrt5zdJCZpDZ5WPqaGuqMaEytMJjKI8mVHc9zXNM6pdeSKKF_s0B-6duaBWCicBOq8yl2a0cdGC51MUluozlZmmlfMgrT4rFLfIx3MZ_W3SyQALG4TiRS6PlMXyP1ylOoqMYphVSEUpWO-DLnmFMEnmdfqRBBOCVw_yxSRx_JIoa2wqRByqQIO9YVIVSjBn434sfa1j3iVbCLKkjq5taC3ZicB-jUM4tXbJo0oCk4JkCJGJXBZFMnp79A9C79-1hJ46IZvjpEoX6QHDxWRjLcnNliRQm2o1b6BKJE55iuQXkOHNFdTPbn7YNGOn6EmYmXxZy8CeKvr9LrlTa1Uzs2CsY_68oEuilr61pr7dkk1PqpzseE7nsI53__6_tshl0LzkYDTev0euMKwljcWFgk3SKRdLc59cUl_LabF4UJEJJZ_OWwN_Al2CuEY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+machine+learning+algorithm+based+on+decision+tree+optimization+for+pattern+recognition+in+track+and+field+sports&rft.jtitle=PloS+one&rft.au=Cui%2C+Guomei&rft.au=Wang%2C+Chuanjun&rft.date=2025-02-13&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=20&rft.issue=2&rft_id=info:doi/10.1371%2Fjournal.pone.0317414&rft.externalDocID=PMC11824974
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon