Enhanced kernel search algorithm for optimizing local search capability and its application to carbon fiber draft process
Kernel Search Optimization (KSO) is characterized by insufficient accuracy in local search, which makes it difficult to achieve local optimization. Therefore, this paper proposes a Large Local Search Kernel Search Optimization (LLSKSO) to enhance the local optimization ability. LLSKSO achieves the p...
Uložené v:
| Vydané v: | PloS one Ročník 20; číslo 11; s. e0334348 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Public Library of Science
26.11.2025
Public Library of Science (PLoS) |
| Predmet: | |
| ISSN: | 1932-6203, 1932-6203 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Kernel Search Optimization (KSO) is characterized by insufficient accuracy in local search, which makes it difficult to achieve local optimization. Therefore, this paper proposes a Large Local Search Kernel Search Optimization (LLSKSO) to enhance the local optimization ability. LLSKSO achieves the performance improvement by introducing several strategies. First, the initial population is homogenized using the good point set mechanism. Then, the little dung beetle search mechanism of the Dung Beetle Optimizer (DBO) is introduced to enhance the local search capability of the KSO. Finally, the Cauchy-Gaussian mutation strategy is utilized to prevent the algorithm from falling into local traps. These three steps enable LLSKSO to achieve a dynamic balance between local and global search. In addition, to verify the performance and robustness of LLSKSO, comparison experiments between LLSKSO and 10 well-known algorithms are conducted on 50 benchmark test functions. From the statistical results of mean, best and variance of different algorithms, the LLSKSO algorithm outperforms the other algorithms. Finally, LLSKSO is applied to the engineering problem of carbon fiber drafting ratio optimization. Moreover, the experimental results obtained by LLSKSO yielded smaller line densities and greater strengths compared to other algorithms. LLSKSO achieves theoretical optima in 16 out of 20 high-dimensional benchmark functions, with an average CPU runtime reduced by 30% compared to baseline methods. Therefore, it can be shown that LLSKSO can be used as an effective optimization algorithm and engineering assistance. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1932-6203 1932-6203 |
| DOI: | 10.1371/journal.pone.0334348 |