A method of deep network auto-training based on the MTPI auto-transfer learning and a reinforcement learning algorithm for vegetation detection in a dry thermal valley environment

UAV image acquisition and deep learning techniques have been widely used in field hydrological monitoring to meet the increasing data volume demand and refined quality. However, manual parameter training requires trial-and-error costs (T&E), and existing auto-trainings adapt to simple datasets a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in plant science Jg. 15; S. 1448669
Hauptverfasser: Chen, Yayong, Zhou, Beibei, Xiaopeng, Chen, Ma, Changkun, Cui, Lei, Lei, Feng, Han, Xiaojie, Chen, Linjie, Wu, Shanshan, Ye, Dapeng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland Frontiers Media SA 2024
Frontiers Media S.A
Schlagworte:
ISSN:1664-462X, 1664-462X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!