A method of deep network auto-training based on the MTPI auto-transfer learning and a reinforcement learning algorithm for vegetation detection in a dry thermal valley environment
UAV image acquisition and deep learning techniques have been widely used in field hydrological monitoring to meet the increasing data volume demand and refined quality. However, manual parameter training requires trial-and-error costs (T&E), and existing auto-trainings adapt to simple datasets a...
Gespeichert in:
| Veröffentlicht in: | Frontiers in plant science Jg. 15; S. 1448669 |
|---|---|
| Hauptverfasser: | , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
Frontiers Media SA
2024
Frontiers Media S.A |
| Schlagworte: | |
| ISSN: | 1664-462X, 1664-462X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!