A novel fixed-time prescribed performance sliding mode control for uncertain wheeled mobile robots
This paper proposes a novel fixed-time prescribed performance sliding mode control method, specifically designed to address trajectory tracking issues in wheeled mobile robots (WMRs) affected by wheel slipping, skidding (WSS), and external disturbances. A new prescribed performance sliding surface i...
Uloženo v:
| Vydáno v: | Scientific reports Ročník 15; číslo 1; s. 5340 - 26 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
13.02.2025
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper proposes a novel fixed-time prescribed performance sliding mode control method, specifically designed to address trajectory tracking issues in wheeled mobile robots (WMRs) affected by wheel slipping, skidding (WSS), and external disturbances. A new prescribed performance sliding surface is first introduced based on a prescribed performance function (PPF) and a non-singular fast terminal sliding function (NFTSF). This design ensures that tracking errors converge to zero within a fixed time while maintaining stability by keeping error states within predefined limits. A novel fixed-time prescribed performance non-singular fast terminal sliding mode control (FPP-NFTSMC) algorithm is proposed based on the sliding function. The control method integrates a uniform second-order sliding mode (USOSM) algorithm to provide a continuous control signal, effectively reducing the chattering effect. This method combines the benefits of PPF, NFTSMC, and USOSM algorithm to achieve high-precision position tracking, minimize chattering, guarantee fixed-time convergence, ensure tracking errors remain within bounds, and maintain robustness against WSS, and external disturbances. The fixed-time stability of the WMR systems is demonstrated by the Lyapunov stability theory. The effectiveness of the proposed method is validated through simulations of tracking straight-line and U-shaped trajectories. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2045-2322 2045-2322 |
| DOI: | 10.1038/s41598-025-89126-6 |