GenoGAM 2.0: scalable and efficient implementation of genome-wide generalized additive models for gigabase-scale genomes

Background GenoGAM (Genome-wide generalized additive models) is a powerful statistical modeling tool for the analysis of ChIP-Seq data with flexible factorial design experiments. However large runtime and memory requirements of its current implementation prohibit its application to gigabase-scale ge...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:BMC bioinformatics Ročník 19; číslo 1; s. 247 - 9
Hlavní autoři: Stricker, Georg, Galinier, Mathilde, Gagneur, Julien
Médium: Journal Article
Jazyk:angličtina
Vydáno: London BioMed Central 27.06.2018
BioMed Central Ltd
Springer Nature B.V
BMC
Témata:
ISSN:1471-2105, 1471-2105
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background GenoGAM (Genome-wide generalized additive models) is a powerful statistical modeling tool for the analysis of ChIP-Seq data with flexible factorial design experiments. However large runtime and memory requirements of its current implementation prohibit its application to gigabase-scale genomes such as mammalian genomes. Results Here we present GenoGAM 2.0, a scalable and efficient implementation that is 2 to 3 orders of magnitude faster than the previous version. This is achieved by exploiting the sparsity of the model using the SuperLU direct solver for parameter fitting, and sparse Cholesky factorization together with the sparse inverse subset algorithm for computing standard errors. Furthermore the HDF5 library is employed to store data efficiently on hard drive, reducing memory footprint while keeping I/O low. Whole-genome fits for human ChIP-seq datasets (ca. 300 million parameters) could be obtained in less than 9 hours on a standard 60-core server. GenoGAM 2.0 is implemented as an open source R package and currently available on GitHub. A Bioconductor release of the new version is in preparation. Conclusions We have vastly improved the performance of the GenoGAM framework, opening up its application to all types of organisms. Moreover, our algorithmic improvements for fitting large GAMs could be of interest to the statistical community beyond the genomics field.
AbstractList Background GenoGAM (Genome-wide generalized additive models) is a powerful statistical modeling tool for the analysis of ChIP-Seq data with flexible factorial design experiments. However large runtime and memory requirements of its current implementation prohibit its application to gigabase-scale genomes such as mammalian genomes. Results Here we present GenoGAM 2.0, a scalable and efficient implementation that is 2 to 3 orders of magnitude faster than the previous version. This is achieved by exploiting the sparsity of the model using the SuperLU direct solver for parameter fitting, and sparse Cholesky factorization together with the sparse inverse subset algorithm for computing standard errors. Furthermore the HDF5 library is employed to store data efficiently on hard drive, reducing memory footprint while keeping I/O low. Whole-genome fits for human ChIP-seq datasets (ca. 300 million parameters) could be obtained in less than 9 hours on a standard 60-core server. GenoGAM 2.0 is implemented as an open source R package and currently available on GitHub. A Bioconductor release of the new version is in preparation. Conclusions We have vastly improved the performance of the GenoGAM framework, opening up its application to all types of organisms. Moreover, our algorithmic improvements for fitting large GAMs could be of interest to the statistical community beyond the genomics field.
Abstract Background GenoGAM (Genome-wide generalized additive models) is a powerful statistical modeling tool for the analysis of ChIP-Seq data with flexible factorial design experiments. However large runtime and memory requirements of its current implementation prohibit its application to gigabase-scale genomes such as mammalian genomes. Results Here we present GenoGAM 2.0, a scalable and efficient implementation that is 2 to 3 orders of magnitude faster than the previous version. This is achieved by exploiting the sparsity of the model using the SuperLU direct solver for parameter fitting, and sparse Cholesky factorization together with the sparse inverse subset algorithm for computing standard errors. Furthermore the HDF5 library is employed to store data efficiently on hard drive, reducing memory footprint while keeping I/O low. Whole-genome fits for human ChIP-seq datasets (ca. 300 million parameters) could be obtained in less than 9 hours on a standard 60-core server. GenoGAM 2.0 is implemented as an open source R package and currently available on GitHub. A Bioconductor release of the new version is in preparation. Conclusions We have vastly improved the performance of the GenoGAM framework, opening up its application to all types of organisms. Moreover, our algorithmic improvements for fitting large GAMs could be of interest to the statistical community beyond the genomics field.
GenoGAM (Genome-wide generalized additive models) is a powerful statistical modeling tool for the analysis of ChIP-Seq data with flexible factorial design experiments. However large runtime and memory requirements of its current implementation prohibit its application to gigabase-scale genomes such as mammalian genomes. Here we present GenoGAM 2.0, a scalable and efficient implementation that is 2 to 3 orders of magnitude faster than the previous version. This is achieved by exploiting the sparsity of the model using the SuperLU direct solver for parameter fitting, and sparse Cholesky factorization together with the sparse inverse subset algorithm for computing standard errors. Furthermore the HDF5 library is employed to store data efficiently on hard drive, reducing memory footprint while keeping I/O low. Whole-genome fits for human ChIP-seq datasets (ca. 300 million parameters) could be obtained in less than 9 hours on a standard 60-core server. GenoGAM 2.0 is implemented as an open source R package and currently available on GitHub. A Bioconductor release of the new version is in preparation. We have vastly improved the performance of the GenoGAM framework, opening up its application to all types of organisms. Moreover, our algorithmic improvements for fitting large GAMs could be of interest to the statistical community beyond the genomics field.
Background GenoGAM (Genome-wide generalized additive models) is a powerful statistical modeling tool for the analysis of ChIP-Seq data with flexible factorial design experiments. However large runtime and memory requirements of its current implementation prohibit its application to gigabase-scale genomes such as mammalian genomes. Results Here we present GenoGAM 2.0, a scalable and efficient implementation that is 2 to 3 orders of magnitude faster than the previous version. This is achieved by exploiting the sparsity of the model using the SuperLU direct solver for parameter fitting, and sparse Cholesky factorization together with the sparse inverse subset algorithm for computing standard errors. Furthermore the HDF5 library is employed to store data efficiently on hard drive, reducing memory footprint while keeping I/O low. Whole-genome fits for human ChIP-seq datasets (ca. 300 million parameters) could be obtained in less than 9 hours on a standard 60-core server. GenoGAM 2.0 is implemented as an open source R package and currently available on GitHub. A Bioconductor release of the new version is in preparation. Conclusions We have vastly improved the performance of the GenoGAM framework, opening up its application to all types of organisms. Moreover, our algorithmic improvements for fitting large GAMs could be of interest to the statistical community beyond the genomics field.
GenoGAM (Genome-wide generalized additive models) is a powerful statistical modeling tool for the analysis of ChIP-Seq data with flexible factorial design experiments. However large runtime and memory requirements of its current implementation prohibit its application to gigabase-scale genomes such as mammalian genomes.BACKGROUNDGenoGAM (Genome-wide generalized additive models) is a powerful statistical modeling tool for the analysis of ChIP-Seq data with flexible factorial design experiments. However large runtime and memory requirements of its current implementation prohibit its application to gigabase-scale genomes such as mammalian genomes.Here we present GenoGAM 2.0, a scalable and efficient implementation that is 2 to 3 orders of magnitude faster than the previous version. This is achieved by exploiting the sparsity of the model using the SuperLU direct solver for parameter fitting, and sparse Cholesky factorization together with the sparse inverse subset algorithm for computing standard errors. Furthermore the HDF5 library is employed to store data efficiently on hard drive, reducing memory footprint while keeping I/O low. Whole-genome fits for human ChIP-seq datasets (ca. 300 million parameters) could be obtained in less than 9 hours on a standard 60-core server. GenoGAM 2.0 is implemented as an open source R package and currently available on GitHub. A Bioconductor release of the new version is in preparation.RESULTSHere we present GenoGAM 2.0, a scalable and efficient implementation that is 2 to 3 orders of magnitude faster than the previous version. This is achieved by exploiting the sparsity of the model using the SuperLU direct solver for parameter fitting, and sparse Cholesky factorization together with the sparse inverse subset algorithm for computing standard errors. Furthermore the HDF5 library is employed to store data efficiently on hard drive, reducing memory footprint while keeping I/O low. Whole-genome fits for human ChIP-seq datasets (ca. 300 million parameters) could be obtained in less than 9 hours on a standard 60-core server. GenoGAM 2.0 is implemented as an open source R package and currently available on GitHub. A Bioconductor release of the new version is in preparation.We have vastly improved the performance of the GenoGAM framework, opening up its application to all types of organisms. Moreover, our algorithmic improvements for fitting large GAMs could be of interest to the statistical community beyond the genomics field.CONCLUSIONSWe have vastly improved the performance of the GenoGAM framework, opening up its application to all types of organisms. Moreover, our algorithmic improvements for fitting large GAMs could be of interest to the statistical community beyond the genomics field.
Audience Academic
Author Gagneur, Julien
Stricker, Georg
Galinier, Mathilde
Author_xml – sequence: 1
  givenname: Georg
  orcidid: 0000-0003-2949-1758
  surname: Stricker
  fullname: Stricker, Georg
  organization: Department of Informatics, Technical University Munich
– sequence: 2
  givenname: Mathilde
  surname: Galinier
  fullname: Galinier, Mathilde
  organization: Department of Informatics, Technical University Munich
– sequence: 3
  givenname: Julien
  surname: Gagneur
  fullname: Gagneur, Julien
  email: gagneur@in.tum.de
  organization: Department of Informatics, Technical University Munich
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29945559$$D View this record in MEDLINE/PubMed
BookMark eNptkk-P0zAQxS20iN0tfAAuyBIXOKTYjh3b3KoVlEqLkPhztibxJHKVxEucLgufHpcWliLkg0fj33vyjN4lORvjiIQ85WzJualeJS6MsgXjphCiNIV-QC641LwQnKmzv-pzcpnSljGuDVOPyLmwViql7AW5W-MY16v3VCzZa5oa6KHukcLoKbZtaAKOMw3DTY9DrmAOcaSxpV1WDVh8Cx73NU7Qhx_oKXgf5nCLdIge-0TbONEudFBDwmLvjkdpekwettAnfHK8F-TL2zefr94V1x_Wm6vVdeFLbefCawtW18paVaEUsuKiqVTZgJRCZMRIXXMGzLSSQ8nAaG9lZX2N2BgNrFyQzcHXR9i6mykMMH13EYL71YhT52CaQ9OjA2llw5mua-klemNKxltTIhpkXuRqQV4cvG6m-HWHaXZDSA32PYwYd8kJVjFTWc6rjD7_B93G3TTmSTOluVS20uqe6vJmXBjbOE_Q7E3dSsmKqVIykanlf6h8PA6hyZFoQ-6fCF6eCDIz493cwS4lt_n08ZR9dvzorh7Q_9nQ74hkQByAlJ_GDqf7SThz-xy6Qw5dzqHb59Dp8id-4str
ContentType Journal Article
Copyright The Author(s) 2018
COPYRIGHT 2018 BioMed Central Ltd.
Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: COPYRIGHT 2018 BioMed Central Ltd.
– notice: Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
DBID C6C
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
DOA
DOI 10.1186/s12859-018-2238-7
DatabaseName Springer Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Science (Gale)
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Databases
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ) (Open Access)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 9
ExternalDocumentID oai_doaj_org_article_a494c107bb4d4ed88301f83ee8e0d2f8
A546053402
29945559
10_1186_s12859_018_2238_7
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Horizon 2020
  grantid: 633974
  funderid: http://dx.doi.org/10.13039/501100007601
– fundername: TUM Open Access Publishing Fund
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
AFFHD
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
ID FETCH-LOGICAL-d379t-d79a97b59956e424612c653ca4422d37847b10a08f41a30a87d9469dbeec87a03
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000437008200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Mon Nov 10 04:30:47 EST 2025
Thu Oct 02 10:42:42 EDT 2025
Mon Oct 06 18:38:56 EDT 2025
Tue Nov 11 10:27:39 EST 2025
Tue Nov 04 17:24:29 EST 2025
Thu Nov 13 14:29:17 EST 2025
Thu Apr 03 06:59:46 EDT 2025
Sat Sep 06 07:27:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Transcription factors
ChIP-Seq
Sparse inverse subset algorithm
Generalized additive models
Genome-wide analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d379t-d79a97b59956e424612c653ca4422d37847b10a08f41a30a87d9469dbeec87a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2949-1758
OpenAccessLink https://link.springer.com/10.1186/s12859-018-2238-7
PMID 29945559
PQID 2071459675
PQPubID 44065
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_a494c107bb4d4ed88301f83ee8e0d2f8
proquest_miscellaneous_2060869116
proquest_journals_2071459675
gale_infotracmisc_A546053402
gale_infotracacademiconefile_A546053402
gale_incontextgauss_ISR_A546053402
pubmed_primary_29945559
springer_journals_10_1186_s12859_018_2238_7
PublicationCentury 2000
PublicationDate 2018-06-27
PublicationDateYYYYMMDD 2018-06-27
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-27
  day: 27
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2018
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
SSID ssj0017805
Score 2.255736
Snippet Background GenoGAM (Genome-wide generalized additive models) is a powerful statistical modeling tool for the analysis of ChIP-Seq data with flexible factorial...
GenoGAM (Genome-wide generalized additive models) is a powerful statistical modeling tool for the analysis of ChIP-Seq data with flexible factorial design...
Background GenoGAM (Genome-wide generalized additive models) is a powerful statistical modeling tool for the analysis of ChIP-Seq data with flexible factorial...
Abstract Background GenoGAM (Genome-wide generalized additive models) is a powerful statistical modeling tool for the analysis of ChIP-Seq data with flexible...
SourceID doaj
proquest
gale
pubmed
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 247
SubjectTerms Algorithms
Applied mathematics
Binomial distribution
Bioinformatics
Biomedical and Life Sciences
ChIP-Seq
Cholesky factorization
Chromatin
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer memory
Data processing
Factorial design
Generalized additive models
Genome-wide analysis
Genomes
Genomic libraries
Genomics
Genomics - methods
Humans
Life Sciences
Mathematical models
Microarrays
Parameters
Proteins
Results and data
Scale (ratio)
Software
Sparse inverse subset algorithm
Sparsity
Statistical analysis
Statistical models
Transcription factors
Yeast
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQCiQuiDeBBRmExAGZdWwntrkVxC4cWCEe0t4sx3aqHDZZNS2vX89M4i5bOHDhVjUTN50Z58sXj78h5KlXbdItbxlgrWAqJMms4RWrIqCtljJp66dmE_r42Jyc2A8XWn1hTdgsDzw77sArqwJwlKZRUaVoDGRka2RKJvEo2mmbL9d2S6by-gEq9ec1zNLUB2OJOm1AmyErAKOYzgr9f9-HLwDRHyujE-AcXifX8pMiXcxXeINcSv1NcmXuHfnjFvl-lPrhaPGeihf8JR3B1bgJivo-0jTJQgCa0O50Wx6O_qdDS1GT9TSxb11M-BnfSHU_U6RYV4R3Pjq1xhkpPMvSZbf0iHIMR0_51PE2-XL45vPrtyy3UWBRartmEdxtdYPKYnVSqB8nQl3J4CE6AkwAn5qSe25aVXrJvdHRAmmOTUrBaM_lHbLXD326R6g0oq2DaGGUUsWysZKHikcvbNXAb_mCvEK3urNZKcOhdvX0BUTU5Yi6f0W0IE8wKA7VKXosf1n6zTi6d58-ukWFy7gSOG9BnmWjdlivfPB5NwFcJwpa7Vju71jC9Am7h7exd3n6jk7gtq7KApkqyOPzw3gmlqT1adigTQ10ELCiLsjdOWfO_zdgvKqAqxXk-TaJfg8-0S5TuzkpHSSlw6R0-v7_8N4DclVgnvOaCb1P9tarTXpILoev625cPZpmyS_fURMe
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSF9yNQkEFIHJCLYzuxwwUtiBYOVBUPqTfLsZ1VDk3KZpfXr2cm8W5ZkLhwizYTx6v5POPxTL4h5IlTTdQNbxj4WsGUj5JVhhesCOBttZRRV25sNqEPD83xcXWUDtyGVFa5tomjoQ69xzNyPAnJVVHB_vbl6ReGXaMwu5paaJwnF5AlQYyle0ebLALy9adMZm7K50OObG0QPAM2wFMxnXj6_7bGv7mjP_Kjo9vZv_q_E75GrqQNJ51NCLlOzsXuBrk0taD8cZN8P4hdfzB7T8Uef0EH0Bh-S0VdF2gc2SXAKdH2ZF1ljmqkfUOR2vUksm9tiHiNB1vtzxgoliehAaVjh52BwpaYztu5Q2fJcPSYHh1ukc_7bz69fstSNwYWpK6WLIDWKl0jQVkZFdLQCV8W0jtQsgARcHN1zh03jcqd5M7oUEHsHeoYvdGOy9tkp-u7eJdQaURTetHAKLkKeV1J7gsenKiKGt7lMvIK9WJPJ8INixTY4w_9Ym7TirJOVcpD8FrXKqgYjAFT1RgZo4k8iMZk5DFq1SLJRYdVNHO3Ggb77uMHOyswGywhdM7I0yTU9MuF8y59lADzRF6sLcndLUlYhX779hoFNlmBwZ5BICOPNrfxSaxs62K_QpkSokpwOWVG7kyg2_xv2CqoAkK-jDxbo_Bs8DF6M6WdUG0B1RZRbfW9f0_lPrkscAnwkgm9S3aWi1V8QC76r8t2WDwcF9Av5sggug
  priority: 102
  providerName: ProQuest
Title GenoGAM 2.0: scalable and efficient implementation of genome-wide generalized additive models for gigabase-scale genomes
URI https://link.springer.com/article/10.1186/s12859-018-2238-7
https://www.ncbi.nlm.nih.gov/pubmed/29945559
https://www.proquest.com/docview/2071459675
https://www.proquest.com/docview/2060869116
https://doaj.org/article/a494c107bb4d4ed88301f83ee8e0d2f8
Volume 19
WOSCitedRecordID wos000437008200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ) (Open Access)
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Standard Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbYXZC48H4ElsogJA7I4NhJ7HDrot1lhbaKuoDKXiwndqoeNkFNy-vXM-OmhQIXuFhVPXZTzdifJzP-hpCnNqm9qnnNAGsFSyovWa55ylIHaKuk9Cq3odiEGo30ZJIX_T3ubp3tvg5Jhp06LGudvexi5FoD1xc0CzjD1A7ZA7TTWK9hfPZhEzpAkv4-fPnXYT05_59b8C8Y9FtQNGDN0fX_esob5Fp_tKTDlS3cJJd8c4tcWRWb_HabfD32TXs8PKXiBX9FO9AN3pqitnHUBx4JgB86u1jnk6PCaFtTJHG98OzLzHn8jK-wZt-9o5iIhFslDbV0OgqHXzqdTS3CIsPZfT-0u0PeHx2-e_2G9XUXmJMqXzAH-slViVRkmU-QcE5UWSorC-oUIAKAVsbccl0nsZXcauVy8LJd6X2lleXyLtlt2sbfJ1RqUWeVqGGWOHFxmUtepdxZkacl_JaNyAEqw3xaUWsYJLsOX7TzqenXjrFJnlTgppZl4hLvtIZNqdbSe-25E7WOyBNUpUE6iwbzZaZ22XXm5GxshinGfSU4yRF51gvV7WJuK9tfP4DnRAasLcn9LUlYb9V299piTL_eOyPwHliag_cVkcebbhyJOWyNb5cok4H_COCSReTeytI2_xsOBUkKzl1Enq_N6ufkwU_TmVnZlgHbMmhbRj34J-mH5KpAu-QZE2qf7C7mS_-IXK4-L2bdfEB21ESFVg_I3sHhqBgPwgsKaN8qNsCk2ALaIj2H_uLktPg4CAvvB3_2Hyc
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKAcGF9yNQwCAQB2RwHCd2kBBaHm1X264QFKk348TOag9NymaXUn4Uv5GZPLYsSNx64BYlE8dJvnl5xjOEPLay8KrgBQNdK5jMfcRSzWMWO9C2Koq8Sm3TbEKNx3p_P_2wRn72e2EwrbKXiY2gdlWOa-S4EhLKOAX79vXhV4ZdozC62rfQaGEx8sdH4LLVr4bv4P8-EWLz_d7bbdZ1FWAuUumcOXh6qjIstJV4ieXURJ7EUW5hsgJIQFxnIbdcFzK0EbdauRR8SJd5n2tleQTjniFnZaQV8tVIsWXUAvsDdJHTUCcv6hCrw4GzDlgEzchU1xfgb-n_m_r7Ix7bqLnNy__bB7pCLnUGNR20HHCVrPnyGjnfttg8vk6-b_my2hrsUvGcv6Q1IBL3ilFbOuqb6hmgdOn0oM-iR5jSqqBYuvbAs6Op83iMC3fTH95RTL9CBUGbDkI1BZOfTqYTi8YAw9F9d2t9g3w-lde-SdbLqvS3CY20KJJcFDBKKF2YpRHPY-6sSOMMnmUD8gZxYA7bgiIGS3w3J6rZxHQSw1iZyhyc8yyTTnqnNYjiQkfea8-dKHRAHiGKDBbxKDFLaGIXdW2Gnz6aQYzR7khyEZCnHVFRzWc2t92mC5gn1v1aodxYoQQpk69e7lFnOilXmxPIBeTh8jLeiZl7pa8WSJOA1wwqNQnIrRbky_cGU0jG4NIG5FmP-pPBG-9UJ6blIgNcZJCLjLrz76k8IBe293Z3zM5wPLpLLgpkP54woTbI-ny28PfIufzbfFrP7jfMS8mX02aGX0_NexM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagQMWFNyVQwCAkDsjUsZ3Y4bY8tlTAqqKAerOc2F7toUm12eX165lJsgsLXBC3KBk7jmbs8ZcZf0PII6di0JFHBr5WMFUFyQrDM5Z58LZayqAL1xWb0JOJOT4uDoc6p-0q230VkuzPNCBLU73YO_Wxn-Im32tT5F0DGAxaBp_D9FlyTmEePcL1o0_rMAIS9g-hzL82G4j6_1yOf_FHvwVIO78zvvzfI75CLg1bTjrqbeQqORPqa-RCX4Ty23XydT_Uzf7oHRVP-TPags7wNBV1taeh45eAl9DZySrPHBVJm0iR3PUksC8zH_Aaf23NvgdPMUEJl1Da1dhpKWyK6XQ2deguGfYehqbtDfJx_OrDi9dsqMfAvNTFgnnQW6FLpCjLg0IiOlHlmawcqFmACDi6MuWOm6hSJ7kz2heAvn0ZQmW04_Im2aqbOtwiVBoR80pE6CVVPi0LyauMeyeKrIR3uYQ8R8XY055ywyIJdnejmU_tMKesU4WqAL6WpfIqeGNgsYpGhmAC9yKahDxEtVqkuagxj2bqlm1rD47e21GG8WAJ4Dkhjweh2CzmrnLDsQQYJzJjbUjubkjCPKw2H6-sxw7rQGsFng_LCkBlCXmwfowtMbetDs0SZXLAleB08oTs9Fa3_m7YLKgMQF9CnqxM7GfnHX4zue1ty4JtWbQtq2__k_R9sn34cmzfHkze3CEXBZooz5nQu2RrMV-Gu-R89Xkxa-f3urn1A4TOIho
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GenoGAM+2.0%3A+scalable+and+efficient+implementation+of+genome-wide+generalized+additive+models+for+gigabase-scale+genomes&rft.jtitle=BMC+bioinformatics&rft.au=Stricker%2C+Georg&rft.au=Galinier%2C+Mathilde&rft.au=Gagneur%2C+Julien&rft.date=2018-06-27&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-018-2238-7&rft.externalDocID=A546053402
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon