GenoGAM 2.0: scalable and efficient implementation of genome-wide generalized additive models for gigabase-scale genomes
Background GenoGAM (Genome-wide generalized additive models) is a powerful statistical modeling tool for the analysis of ChIP-Seq data with flexible factorial design experiments. However large runtime and memory requirements of its current implementation prohibit its application to gigabase-scale ge...
Uloženo v:
| Vydáno v: | BMC bioinformatics Ročník 19; číslo 1; s. 247 - 9 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
BioMed Central
27.06.2018
BioMed Central Ltd Springer Nature B.V BMC |
| Témata: | |
| ISSN: | 1471-2105, 1471-2105 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Background
GenoGAM (Genome-wide generalized additive models) is a powerful statistical modeling tool for the analysis of ChIP-Seq data with flexible factorial design experiments. However large runtime and memory requirements of its current implementation prohibit its application to gigabase-scale genomes such as mammalian genomes.
Results
Here we present GenoGAM 2.0, a scalable and efficient implementation that is 2 to 3 orders of magnitude faster than the previous version. This is achieved by exploiting the sparsity of the model using the SuperLU direct solver for parameter fitting, and sparse Cholesky factorization together with the sparse inverse subset algorithm for computing standard errors. Furthermore the HDF5 library is employed to store data efficiently on hard drive, reducing memory footprint while keeping I/O low. Whole-genome fits for human ChIP-seq datasets (ca. 300 million parameters) could be obtained in less than 9 hours on a standard 60-core server. GenoGAM 2.0 is implemented as an open source
R
package and currently available on GitHub. A Bioconductor release of the new version is in preparation.
Conclusions
We have vastly improved the performance of the GenoGAM framework, opening up its application to all types of organisms. Moreover, our algorithmic improvements for fitting large GAMs could be of interest to the statistical community beyond the genomics field. |
|---|---|
| AbstractList | Background
GenoGAM (Genome-wide generalized additive models) is a powerful statistical modeling tool for the analysis of ChIP-Seq data with flexible factorial design experiments. However large runtime and memory requirements of its current implementation prohibit its application to gigabase-scale genomes such as mammalian genomes.
Results
Here we present GenoGAM 2.0, a scalable and efficient implementation that is 2 to 3 orders of magnitude faster than the previous version. This is achieved by exploiting the sparsity of the model using the SuperLU direct solver for parameter fitting, and sparse Cholesky factorization together with the sparse inverse subset algorithm for computing standard errors. Furthermore the HDF5 library is employed to store data efficiently on hard drive, reducing memory footprint while keeping I/O low. Whole-genome fits for human ChIP-seq datasets (ca. 300 million parameters) could be obtained in less than 9 hours on a standard 60-core server. GenoGAM 2.0 is implemented as an open source
R
package and currently available on GitHub. A Bioconductor release of the new version is in preparation.
Conclusions
We have vastly improved the performance of the GenoGAM framework, opening up its application to all types of organisms. Moreover, our algorithmic improvements for fitting large GAMs could be of interest to the statistical community beyond the genomics field. Abstract Background GenoGAM (Genome-wide generalized additive models) is a powerful statistical modeling tool for the analysis of ChIP-Seq data with flexible factorial design experiments. However large runtime and memory requirements of its current implementation prohibit its application to gigabase-scale genomes such as mammalian genomes. Results Here we present GenoGAM 2.0, a scalable and efficient implementation that is 2 to 3 orders of magnitude faster than the previous version. This is achieved by exploiting the sparsity of the model using the SuperLU direct solver for parameter fitting, and sparse Cholesky factorization together with the sparse inverse subset algorithm for computing standard errors. Furthermore the HDF5 library is employed to store data efficiently on hard drive, reducing memory footprint while keeping I/O low. Whole-genome fits for human ChIP-seq datasets (ca. 300 million parameters) could be obtained in less than 9 hours on a standard 60-core server. GenoGAM 2.0 is implemented as an open source R package and currently available on GitHub. A Bioconductor release of the new version is in preparation. Conclusions We have vastly improved the performance of the GenoGAM framework, opening up its application to all types of organisms. Moreover, our algorithmic improvements for fitting large GAMs could be of interest to the statistical community beyond the genomics field. GenoGAM (Genome-wide generalized additive models) is a powerful statistical modeling tool for the analysis of ChIP-Seq data with flexible factorial design experiments. However large runtime and memory requirements of its current implementation prohibit its application to gigabase-scale genomes such as mammalian genomes. Here we present GenoGAM 2.0, a scalable and efficient implementation that is 2 to 3 orders of magnitude faster than the previous version. This is achieved by exploiting the sparsity of the model using the SuperLU direct solver for parameter fitting, and sparse Cholesky factorization together with the sparse inverse subset algorithm for computing standard errors. Furthermore the HDF5 library is employed to store data efficiently on hard drive, reducing memory footprint while keeping I/O low. Whole-genome fits for human ChIP-seq datasets (ca. 300 million parameters) could be obtained in less than 9 hours on a standard 60-core server. GenoGAM 2.0 is implemented as an open source R package and currently available on GitHub. A Bioconductor release of the new version is in preparation. We have vastly improved the performance of the GenoGAM framework, opening up its application to all types of organisms. Moreover, our algorithmic improvements for fitting large GAMs could be of interest to the statistical community beyond the genomics field. Background GenoGAM (Genome-wide generalized additive models) is a powerful statistical modeling tool for the analysis of ChIP-Seq data with flexible factorial design experiments. However large runtime and memory requirements of its current implementation prohibit its application to gigabase-scale genomes such as mammalian genomes. Results Here we present GenoGAM 2.0, a scalable and efficient implementation that is 2 to 3 orders of magnitude faster than the previous version. This is achieved by exploiting the sparsity of the model using the SuperLU direct solver for parameter fitting, and sparse Cholesky factorization together with the sparse inverse subset algorithm for computing standard errors. Furthermore the HDF5 library is employed to store data efficiently on hard drive, reducing memory footprint while keeping I/O low. Whole-genome fits for human ChIP-seq datasets (ca. 300 million parameters) could be obtained in less than 9 hours on a standard 60-core server. GenoGAM 2.0 is implemented as an open source R package and currently available on GitHub. A Bioconductor release of the new version is in preparation. Conclusions We have vastly improved the performance of the GenoGAM framework, opening up its application to all types of organisms. Moreover, our algorithmic improvements for fitting large GAMs could be of interest to the statistical community beyond the genomics field. GenoGAM (Genome-wide generalized additive models) is a powerful statistical modeling tool for the analysis of ChIP-Seq data with flexible factorial design experiments. However large runtime and memory requirements of its current implementation prohibit its application to gigabase-scale genomes such as mammalian genomes.BACKGROUNDGenoGAM (Genome-wide generalized additive models) is a powerful statistical modeling tool for the analysis of ChIP-Seq data with flexible factorial design experiments. However large runtime and memory requirements of its current implementation prohibit its application to gigabase-scale genomes such as mammalian genomes.Here we present GenoGAM 2.0, a scalable and efficient implementation that is 2 to 3 orders of magnitude faster than the previous version. This is achieved by exploiting the sparsity of the model using the SuperLU direct solver for parameter fitting, and sparse Cholesky factorization together with the sparse inverse subset algorithm for computing standard errors. Furthermore the HDF5 library is employed to store data efficiently on hard drive, reducing memory footprint while keeping I/O low. Whole-genome fits for human ChIP-seq datasets (ca. 300 million parameters) could be obtained in less than 9 hours on a standard 60-core server. GenoGAM 2.0 is implemented as an open source R package and currently available on GitHub. A Bioconductor release of the new version is in preparation.RESULTSHere we present GenoGAM 2.0, a scalable and efficient implementation that is 2 to 3 orders of magnitude faster than the previous version. This is achieved by exploiting the sparsity of the model using the SuperLU direct solver for parameter fitting, and sparse Cholesky factorization together with the sparse inverse subset algorithm for computing standard errors. Furthermore the HDF5 library is employed to store data efficiently on hard drive, reducing memory footprint while keeping I/O low. Whole-genome fits for human ChIP-seq datasets (ca. 300 million parameters) could be obtained in less than 9 hours on a standard 60-core server. GenoGAM 2.0 is implemented as an open source R package and currently available on GitHub. A Bioconductor release of the new version is in preparation.We have vastly improved the performance of the GenoGAM framework, opening up its application to all types of organisms. Moreover, our algorithmic improvements for fitting large GAMs could be of interest to the statistical community beyond the genomics field.CONCLUSIONSWe have vastly improved the performance of the GenoGAM framework, opening up its application to all types of organisms. Moreover, our algorithmic improvements for fitting large GAMs could be of interest to the statistical community beyond the genomics field. |
| Audience | Academic |
| Author | Gagneur, Julien Stricker, Georg Galinier, Mathilde |
| Author_xml | – sequence: 1 givenname: Georg orcidid: 0000-0003-2949-1758 surname: Stricker fullname: Stricker, Georg organization: Department of Informatics, Technical University Munich – sequence: 2 givenname: Mathilde surname: Galinier fullname: Galinier, Mathilde organization: Department of Informatics, Technical University Munich – sequence: 3 givenname: Julien surname: Gagneur fullname: Gagneur, Julien email: gagneur@in.tum.de organization: Department of Informatics, Technical University Munich |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29945559$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkk-P0zAQxS20iN0tfAAuyBIXOKTYjh3b3KoVlEqLkPhztibxJHKVxEucLgufHpcWliLkg0fj33vyjN4lORvjiIQ85WzJualeJS6MsgXjphCiNIV-QC641LwQnKmzv-pzcpnSljGuDVOPyLmwViql7AW5W-MY16v3VCzZa5oa6KHukcLoKbZtaAKOMw3DTY9DrmAOcaSxpV1WDVh8Cx73NU7Qhx_oKXgf5nCLdIge-0TbONEudFBDwmLvjkdpekwettAnfHK8F-TL2zefr94V1x_Wm6vVdeFLbefCawtW18paVaEUsuKiqVTZgJRCZMRIXXMGzLSSQ8nAaG9lZX2N2BgNrFyQzcHXR9i6mykMMH13EYL71YhT52CaQ9OjA2llw5mua-klemNKxltTIhpkXuRqQV4cvG6m-HWHaXZDSA32PYwYd8kJVjFTWc6rjD7_B93G3TTmSTOluVS20uqe6vJmXBjbOE_Q7E3dSsmKqVIykanlf6h8PA6hyZFoQ-6fCF6eCDIz493cwS4lt_n08ZR9dvzorh7Q_9nQ74hkQByAlJ_GDqf7SThz-xy6Qw5dzqHb59Dp8id-4str |
| ContentType | Journal Article |
| Copyright | The Author(s) 2018 COPYRIGHT 2018 BioMed Central Ltd. Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2018 – notice: COPYRIGHT 2018 BioMed Central Ltd. – notice: Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C CGR CUY CVF ECM EIF NPM ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 DOA |
| DOI | 10.1186/s12859-018-2238-7 |
| DatabaseName | Springer Open Access Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Science (Gale) ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Databases ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) (Open Access) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 9 |
| ExternalDocumentID | oai_doaj_org_article_a494c107bb4d4ed88301f83ee8e0d2f8 A546053402 29945559 10_1186_s12859_018_2238_7 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Horizon 2020 grantid: 633974 funderid: http://dx.doi.org/10.13039/501100007601 – fundername: TUM Open Access Publishing Fund |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB ALIPV CGR CUY CVF ECM EIF NPM AFFHD 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI Q9U 7X8 |
| ID | FETCH-LOGICAL-d379t-d79a97b59956e424612c653ca4422d37847b10a08f41a30a87d9469dbeec87a03 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000437008200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-2105 |
| IngestDate | Mon Nov 10 04:30:47 EST 2025 Thu Oct 02 10:42:42 EDT 2025 Mon Oct 06 18:38:56 EDT 2025 Tue Nov 11 10:27:39 EST 2025 Tue Nov 04 17:24:29 EST 2025 Thu Nov 13 14:29:17 EST 2025 Thu Apr 03 06:59:46 EDT 2025 Sat Sep 06 07:27:12 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Transcription factors ChIP-Seq Sparse inverse subset algorithm Generalized additive models Genome-wide analysis |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-d379t-d79a97b59956e424612c653ca4422d37847b10a08f41a30a87d9469dbeec87a03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2949-1758 |
| OpenAccessLink | https://link.springer.com/10.1186/s12859-018-2238-7 |
| PMID | 29945559 |
| PQID | 2071459675 |
| PQPubID | 44065 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a494c107bb4d4ed88301f83ee8e0d2f8 proquest_miscellaneous_2060869116 proquest_journals_2071459675 gale_infotracmisc_A546053402 gale_infotracacademiconefile_A546053402 gale_incontextgauss_ISR_A546053402 pubmed_primary_29945559 springer_journals_10_1186_s12859_018_2238_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-06-27 |
| PublicationDateYYYYMMDD | 2018-06-27 |
| PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-27 day: 27 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2018 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| SSID | ssj0017805 |
| Score | 2.255736 |
| Snippet | Background
GenoGAM (Genome-wide generalized additive models) is a powerful statistical modeling tool for the analysis of ChIP-Seq data with flexible factorial... GenoGAM (Genome-wide generalized additive models) is a powerful statistical modeling tool for the analysis of ChIP-Seq data with flexible factorial design... Background GenoGAM (Genome-wide generalized additive models) is a powerful statistical modeling tool for the analysis of ChIP-Seq data with flexible factorial... Abstract Background GenoGAM (Genome-wide generalized additive models) is a powerful statistical modeling tool for the analysis of ChIP-Seq data with flexible... |
| SourceID | doaj proquest gale pubmed springer |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 247 |
| SubjectTerms | Algorithms Applied mathematics Binomial distribution Bioinformatics Biomedical and Life Sciences ChIP-Seq Cholesky factorization Chromatin Computational Biology/Bioinformatics Computer Appl. in Life Sciences Computer memory Data processing Factorial design Generalized additive models Genome-wide analysis Genomes Genomic libraries Genomics Genomics - methods Humans Life Sciences Mathematical models Microarrays Parameters Proteins Results and data Scale (ratio) Software Sparse inverse subset algorithm Sparsity Statistical analysis Statistical models Transcription factors Yeast |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQCiQuiDeBBRmExAGZdWwntrkVxC4cWCEe0t4sx3aqHDZZNS2vX89M4i5bOHDhVjUTN50Z58sXj78h5KlXbdItbxlgrWAqJMms4RWrIqCtljJp66dmE_r42Jyc2A8XWn1hTdgsDzw77sArqwJwlKZRUaVoDGRka2RKJvEo2mmbL9d2S6by-gEq9ec1zNLUB2OJOm1AmyErAKOYzgr9f9-HLwDRHyujE-AcXifX8pMiXcxXeINcSv1NcmXuHfnjFvl-lPrhaPGeihf8JR3B1bgJivo-0jTJQgCa0O50Wx6O_qdDS1GT9TSxb11M-BnfSHU_U6RYV4R3Pjq1xhkpPMvSZbf0iHIMR0_51PE2-XL45vPrtyy3UWBRartmEdxtdYPKYnVSqB8nQl3J4CE6AkwAn5qSe25aVXrJvdHRAmmOTUrBaM_lHbLXD326R6g0oq2DaGGUUsWysZKHikcvbNXAb_mCvEK3urNZKcOhdvX0BUTU5Yi6f0W0IE8wKA7VKXosf1n6zTi6d58-ukWFy7gSOG9BnmWjdlivfPB5NwFcJwpa7Vju71jC9Am7h7exd3n6jk7gtq7KApkqyOPzw3gmlqT1adigTQ10ELCiLsjdOWfO_zdgvKqAqxXk-TaJfg8-0S5TuzkpHSSlw6R0-v7_8N4DclVgnvOaCb1P9tarTXpILoev625cPZpmyS_fURMe priority: 102 providerName: Directory of Open Access Journals – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSF9yNQkEFIHJCLYzuxwwUtiBYOVBUPqTfLsZ1VDk3KZpfXr2cm8W5ZkLhwizYTx6v5POPxTL4h5IlTTdQNbxj4WsGUj5JVhhesCOBttZRRV25sNqEPD83xcXWUDtyGVFa5tomjoQ69xzNyPAnJVVHB_vbl6ReGXaMwu5paaJwnF5AlQYyle0ebLALy9adMZm7K50OObG0QPAM2wFMxnXj6_7bGv7mjP_Kjo9vZv_q_E75GrqQNJ51NCLlOzsXuBrk0taD8cZN8P4hdfzB7T8Uef0EH0Bh-S0VdF2gc2SXAKdH2ZF1ljmqkfUOR2vUksm9tiHiNB1vtzxgoliehAaVjh52BwpaYztu5Q2fJcPSYHh1ukc_7bz69fstSNwYWpK6WLIDWKl0jQVkZFdLQCV8W0jtQsgARcHN1zh03jcqd5M7oUEHsHeoYvdGOy9tkp-u7eJdQaURTetHAKLkKeV1J7gsenKiKGt7lMvIK9WJPJ8INixTY4w_9Ym7TirJOVcpD8FrXKqgYjAFT1RgZo4k8iMZk5DFq1SLJRYdVNHO3Ggb77uMHOyswGywhdM7I0yTU9MuF8y59lADzRF6sLcndLUlYhX779hoFNlmBwZ5BICOPNrfxSaxs62K_QpkSokpwOWVG7kyg2_xv2CqoAkK-jDxbo_Bs8DF6M6WdUG0B1RZRbfW9f0_lPrkscAnwkgm9S3aWi1V8QC76r8t2WDwcF9Av5sggug priority: 102 providerName: ProQuest |
| Title | GenoGAM 2.0: scalable and efficient implementation of genome-wide generalized additive models for gigabase-scale genomes |
| URI | https://link.springer.com/article/10.1186/s12859-018-2238-7 https://www.ncbi.nlm.nih.gov/pubmed/29945559 https://www.proquest.com/docview/2071459675 https://www.proquest.com/docview/2060869116 https://doaj.org/article/a494c107bb4d4ed88301f83ee8e0d2f8 |
| Volume | 19 |
| WOSCitedRecordID | wos000437008200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) (Open Access) customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M7P dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: K7- dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Standard Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RSV dateStart: 20001201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbYXZC48H4ElsogJA7I4NhJ7HDrot1lhbaKuoDKXiwndqoeNkFNy-vXM-OmhQIXuFhVPXZTzdifJzP-hpCnNqm9qnnNAGsFSyovWa55ylIHaKuk9Cq3odiEGo30ZJIX_T3ubp3tvg5Jhp06LGudvexi5FoD1xc0CzjD1A7ZA7TTWK9hfPZhEzpAkv4-fPnXYT05_59b8C8Y9FtQNGDN0fX_esob5Fp_tKTDlS3cJJd8c4tcWRWb_HabfD32TXs8PKXiBX9FO9AN3pqitnHUBx4JgB86u1jnk6PCaFtTJHG98OzLzHn8jK-wZt-9o5iIhFslDbV0OgqHXzqdTS3CIsPZfT-0u0PeHx2-e_2G9XUXmJMqXzAH-slViVRkmU-QcE5UWSorC-oUIAKAVsbccl0nsZXcauVy8LJd6X2lleXyLtlt2sbfJ1RqUWeVqGGWOHFxmUtepdxZkacl_JaNyAEqw3xaUWsYJLsOX7TzqenXjrFJnlTgppZl4hLvtIZNqdbSe-25E7WOyBNUpUE6iwbzZaZ22XXm5GxshinGfSU4yRF51gvV7WJuK9tfP4DnRAasLcn9LUlYb9V299piTL_eOyPwHliag_cVkcebbhyJOWyNb5cok4H_COCSReTeytI2_xsOBUkKzl1Enq_N6ufkwU_TmVnZlgHbMmhbRj34J-mH5KpAu-QZE2qf7C7mS_-IXK4-L2bdfEB21ESFVg_I3sHhqBgPwgsKaN8qNsCk2ALaIj2H_uLktPg4CAvvB3_2Hyc |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKAcGF9yNQwCAQB2RwHCd2kBBaHm1X264QFKk348TOag9NymaXUn4Uv5GZPLYsSNx64BYlE8dJvnl5xjOEPLay8KrgBQNdK5jMfcRSzWMWO9C2Koq8Sm3TbEKNx3p_P_2wRn72e2EwrbKXiY2gdlWOa-S4EhLKOAX79vXhV4ZdozC62rfQaGEx8sdH4LLVr4bv4P8-EWLz_d7bbdZ1FWAuUumcOXh6qjIstJV4ieXURJ7EUW5hsgJIQFxnIbdcFzK0EbdauRR8SJd5n2tleQTjniFnZaQV8tVIsWXUAvsDdJHTUCcv6hCrw4GzDlgEzchU1xfgb-n_m_r7Ix7bqLnNy__bB7pCLnUGNR20HHCVrPnyGjnfttg8vk6-b_my2hrsUvGcv6Q1IBL3ilFbOuqb6hmgdOn0oM-iR5jSqqBYuvbAs6Op83iMC3fTH95RTL9CBUGbDkI1BZOfTqYTi8YAw9F9d2t9g3w-lde-SdbLqvS3CY20KJJcFDBKKF2YpRHPY-6sSOMMnmUD8gZxYA7bgiIGS3w3J6rZxHQSw1iZyhyc8yyTTnqnNYjiQkfea8-dKHRAHiGKDBbxKDFLaGIXdW2Gnz6aQYzR7khyEZCnHVFRzWc2t92mC5gn1v1aodxYoQQpk69e7lFnOilXmxPIBeTh8jLeiZl7pa8WSJOA1wwqNQnIrRbky_cGU0jG4NIG5FmP-pPBG-9UJ6blIgNcZJCLjLrz76k8IBe293Z3zM5wPLpLLgpkP54woTbI-ny28PfIufzbfFrP7jfMS8mX02aGX0_NexM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagQMWFNyVQwCAkDsjUsZ3Y4bY8tlTAqqKAerOc2F7toUm12eX165lJsgsLXBC3KBk7jmbs8ZcZf0PII6di0JFHBr5WMFUFyQrDM5Z58LZayqAL1xWb0JOJOT4uDoc6p-0q230VkuzPNCBLU73YO_Wxn-Im32tT5F0DGAxaBp_D9FlyTmEePcL1o0_rMAIS9g-hzL82G4j6_1yOf_FHvwVIO78zvvzfI75CLg1bTjrqbeQqORPqa-RCX4Ty23XydT_Uzf7oHRVP-TPags7wNBV1taeh45eAl9DZySrPHBVJm0iR3PUksC8zH_Aaf23NvgdPMUEJl1Da1dhpKWyK6XQ2deguGfYehqbtDfJx_OrDi9dsqMfAvNTFgnnQW6FLpCjLg0IiOlHlmawcqFmACDi6MuWOm6hSJ7kz2heAvn0ZQmW04_Im2aqbOtwiVBoR80pE6CVVPi0LyauMeyeKrIR3uYQ8R8XY055ywyIJdnejmU_tMKesU4WqAL6WpfIqeGNgsYpGhmAC9yKahDxEtVqkuagxj2bqlm1rD47e21GG8WAJ4Dkhjweh2CzmrnLDsQQYJzJjbUjubkjCPKw2H6-sxw7rQGsFng_LCkBlCXmwfowtMbetDs0SZXLAleB08oTs9Fa3_m7YLKgMQF9CnqxM7GfnHX4zue1ty4JtWbQtq2__k_R9sn34cmzfHkze3CEXBZooz5nQu2RrMV-Gu-R89Xkxa-f3urn1A4TOIho |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GenoGAM+2.0%3A+scalable+and+efficient+implementation+of+genome-wide+generalized+additive+models+for+gigabase-scale+genomes&rft.jtitle=BMC+bioinformatics&rft.au=Stricker%2C+Georg&rft.au=Galinier%2C+Mathilde&rft.au=Gagneur%2C+Julien&rft.date=2018-06-27&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-018-2238-7&rft.externalDocID=A546053402 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |