Quantifying Magnetic Anisotropy of Series of Five‐Coordinate CoII Ions: Experimental and Theoretical Insights

Stabilizing large easy‐axis type magnetic anisotropy in molecular complexes is a challenging task, yet it is crucial for the development of information storage devices and applications in molecular spintronics. Achieving this requires a deep understanding of electronic structure and the relationship...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced science Ročník 12; číslo 9; s. e2415624 - n/a
Hlavní autori: Thangaraj, Vijaya, Sartini, Daniele, Borah, Dipanti, Chauhan, Deepanshu, Sharma, Vasudha, Sorace, Lorenzo, Rajaraman, Gopalan, Perfetti, Mauro, Shanmugam, Maheswaran
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Weinheim John Wiley & Sons, Inc 01.03.2025
John Wiley and Sons Inc
Wiley
Predmet:
ISSN:2198-3844, 2198-3844
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Stabilizing large easy‐axis type magnetic anisotropy in molecular complexes is a challenging task, yet it is crucial for the development of information storage devices and applications in molecular spintronics. Achieving this requires a deep understanding of electronic structure and the relationships between structure and properties to develop magneto‐structural correlations that are currently unexplored in the literature. Herein, a series of five‐coordinate distorted square pyramidal CoII complexes [Co(L)(X2)].CHCl3 (where X = Cl (1), Br (2), or I (3)) is reported, all exhibiting easy‐axis magnetic anicotropy. The size of the zero field splitting axial parameter (D) is quantitatively determined (1 = −72; 2 = −67 and 3 = −25 cm−1) using a cantilever torque magnetometry which is further firmly supported by magnetic susceptibility, and EPR measurements. The study of the magnetization relaxation dynamics reveals field‐induced slow relaxation of magnetization due to the predominant Raman relaxation process. Theoretical calculations on 1–3 and optimized model complexes of 1 reveal insights into the electronic structure and highlight the impact of steric and electronic effects on modulating the D values. Overall, the studies reported pave the way for designing a new generation of CoII complexes with enhanced  axiality and a lower rhombicity.    We successfully quantify the zero field splitting parameter (D) in a series of five‐coordinate CoII complexes, [Co(L)(X2)]∙CHCl3 (X = Cl (1), Br (2), I (3)) using torque magnetometry, while highlighting the role of halides in modulating D values. Additionally, ab initio calculations provide insights into the electronic structure and the steric and electronic effects influencing D in these complexes.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2198-3844
2198-3844
DOI:10.1002/advs.202415624