Fuzzy Load Forecast with Optimized Parametric Adjustment Using Jaya Optimization Algorithm

This paper proposes an advanced fuzzy load forecast method optimized by modified Jaya optimization (MJO) algorithm. MATLAB® platform is used to implement the proposed hybrid Fuzzy-MJO load forecasting algorithm and to verify the outperforming features of a Jaya technique over a fuzzy load forecast m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computational intelligence systems Jg. 13; H. 1; S. 875 - 892
1. Verfasser: Anh, Ho Pham Huy
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 01.01.2020
Springer Nature B.V
Springer
Schlagworte:
ISSN:1875-6891, 1875-6883
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes an advanced fuzzy load forecast method optimized by modified Jaya optimization (MJO) algorithm. MATLAB® platform is used to implement the proposed hybrid Fuzzy-MJO load forecasting algorithm and to verify the outperforming features of a Jaya technique over a fuzzy load forecast model. The novel Fuzzy-MJO load forecasting systems uses the day-time and the daily power consumption to efficiently predict the forecast power consumption. The comparative load forecasting results between proposed Fuzzy-MJO with the latest other algorithms are adequately presented. The full week forecast results using proposed hybrid Fuzzy-MJO load forecasting algorithm demonstrates an outperforming superiority, through the various tested cases, regarding to the total and the peak power error in comparison with the fuzzy-based load forecast model.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1875-6891
1875-6883
DOI:10.2991/ijcis.d.200617.002