Machine learning calibration of low-cost NO2 and PM10 sensors: non-linear algorithms and their impact on site transferability

Low-cost air pollution sensors often fail to attain sufficient performance compared with state-of-the-art measurement stations, and they typically require expensive laboratory-based calibration procedures. A repeatedly proposed strategy to overcome these limitations is calibration through co-locatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric measurement techniques Jg. 14; H. 8; S. 5637 - 5655
Hauptverfasser: Nowack, Peer, Konstantinovskiy, Lev, Gardiner, Hannah, Cant, John
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Katlenburg-Lindau Copernicus GmbH 18.08.2021
Copernicus Publications
Schlagworte:
ISSN:1867-1381, 1867-8548
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!