Machine learning calibration of low-cost NO2 and PM10 sensors: non-linear algorithms and their impact on site transferability

Low-cost air pollution sensors often fail to attain sufficient performance compared with state-of-the-art measurement stations, and they typically require expensive laboratory-based calibration procedures. A repeatedly proposed strategy to overcome these limitations is calibration through co-locatio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Atmospheric measurement techniques Ročník 14; číslo 8; s. 5637 - 5655
Hlavní autoři: Nowack, Peer, Konstantinovskiy, Lev, Gardiner, Hannah, Cant, John
Médium: Journal Article
Jazyk:angličtina
Vydáno: Katlenburg-Lindau Copernicus GmbH 18.08.2021
Copernicus Publications
Témata:
ISSN:1867-1381, 1867-8548
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Low-cost air pollution sensors often fail to attain sufficient performance compared with state-of-the-art measurement stations, and they typically require expensive laboratory-based calibration procedures. A repeatedly proposed strategy to overcome these limitations is calibration through co-location with public measurement stations. Here we test the idea of using machine learning algorithms for such calibration tasks using hourly-averaged co-location data for nitrogen dioxide (NO2) and particulate matter of particle sizes smaller than 10 µm (PM10) at three different locations in the urban area of London, UK. We compare the performance of ridge regression, a linear statistical learning algorithm, to two non-linear algorithms in the form of random forest regression (RFR) and Gaussian process regression (GPR). We further benchmark the performance of all three machine learning methods relative to the more common multiple linear regression (MLR). We obtain very good out-of-sample R2 scores (coefficient of determination) >0.7, frequently exceeding 0.8, for the machine learning calibrated low-cost sensors. In contrast, the performance of MLR is more dependent on random variations in the sensor hardware and co-located signals, and it is also more sensitive to the length of the co-location period. We find that, subject to certain conditions, GPR is typically the best-performing method in our calibration setting, followed by ridge regression and RFR. We also highlight several key limitations of the machine learning methods, which will be crucial to consider in any co-location calibration. In particular, all methods are fundamentally limited in how well they can reproduce pollution levels that lie outside those encountered at training stage. We find, however, that the linear ridge regression outperforms the non-linear methods in extrapolation settings. GPR can allow for a small degree of extrapolation, whereas RFR can only predict values within the training range. This algorithm-dependent ability to extrapolate is one of the key limiting factors when the calibrated sensors are deployed away from the co-location site itself. Consequently, we find that ridge regression is often performing as good as or even better than GPR after sensor relocation. Our results highlight the potential of co-location approaches paired with machine learning calibration techniques to reduce costs of air pollution measurements, subject to careful consideration of the co-location training conditions, the choice of calibration variables and the features of the calibration algorithm.
AbstractList Low-cost air pollution sensors often fail to attain sufficient performance compared with state-of-the-art measurement stations, and they typically require expensive laboratory-based calibration procedures. A repeatedly proposed strategy to overcome these limitations is calibration through co-location with public measurement stations. Here we test the idea of using machine learning algorithms for such calibration tasks using hourly-averaged co-location data for nitrogen dioxide (NO 2 ) and particulate matter of particle sizes smaller than 10  µm (PM 10 ) at three different locations in the urban area of London, UK. We compare the performance of ridge regression, a linear statistical learning algorithm, to two non-linear algorithms in the form of random forest regression (RFR) and Gaussian process regression (GPR). We further benchmark the performance of all three machine learning methods relative to the more common multiple linear regression (MLR). We obtain very good out-of-sample R2  scores (coefficient of determination) >0.7 , frequently exceeding 0.8, for the machine learning calibrated low-cost sensors. In contrast, the performance of MLR is more dependent on random variations in the sensor hardware and co-located signals, and it is also more sensitive to the length of the co-location period. We find that, subject to certain conditions, GPR is typically the best-performing method in our calibration setting, followed by ridge regression and RFR. We also highlight several key limitations of the machine learning methods, which will be crucial to consider in any co-location calibration. In particular, all methods are fundamentally limited in how well they can reproduce pollution levels that lie outside those encountered at training stage. We find, however, that the linear ridge regression outperforms the non-linear methods in extrapolation settings. GPR can allow for a small degree of extrapolation, whereas RFR can only predict values within the training range. This algorithm-dependent ability to extrapolate is one of the key limiting factors when the calibrated sensors are deployed away from the co-location site itself. Consequently, we find that ridge regression is often performing as good as or even better than GPR after sensor relocation. Our results highlight the potential of co-location approaches paired with machine learning calibration techniques to reduce costs of air pollution measurements, subject to careful consideration of the co-location training conditions, the choice of calibration variables and the features of the calibration algorithm.
Low-cost air pollution sensors often fail to attain sufficient performance compared with state-of-the-art measurement stations, and they typically require expensive laboratory-based calibration procedures. A repeatedly proposed strategy to overcome these limitations is calibration through co-location with public measurement stations. Here we test the idea of using machine learning algorithms for such calibration tasks using hourly-averaged co-location data for nitrogen dioxide (NO2) and particulate matter of particle sizes smaller than 10 µm (PM10) at three different locations in the urban area of London, UK. We compare the performance of ridge regression, a linear statistical learning algorithm, to two non-linear algorithms in the form of random forest regression (RFR) and Gaussian process regression (GPR). We further benchmark the performance of all three machine learning methods relative to the more common multiple linear regression (MLR). We obtain very good out-of-sample R2 scores (coefficient of determination) >0.7, frequently exceeding 0.8, for the machine learning calibrated low-cost sensors. In contrast, the performance of MLR is more dependent on random variations in the sensor hardware and co-located signals, and it is also more sensitive to the length of the co-location period. We find that, subject to certain conditions, GPR is typically the best-performing method in our calibration setting, followed by ridge regression and RFR. We also highlight several key limitations of the machine learning methods, which will be crucial to consider in any co-location calibration. In particular, all methods are fundamentally limited in how well they can reproduce pollution levels that lie outside those encountered at training stage. We find, however, that the linear ridge regression outperforms the non-linear methods in extrapolation settings. GPR can allow for a small degree of extrapolation, whereas RFR can only predict values within the training range. This algorithm-dependent ability to extrapolate is one of the key limiting factors when the calibrated sensors are deployed away from the co-location site itself. Consequently, we find that ridge regression is often performing as good as or even better than GPR after sensor relocation. Our results highlight the potential of co-location approaches paired with machine learning calibration techniques to reduce costs of air pollution measurements, subject to careful consideration of the co-location training conditions, the choice of calibration variables and the features of the calibration algorithm.
Author Nowack, Peer
Gardiner, Hannah
Konstantinovskiy, Lev
Cant, John
Author_xml – sequence: 1
  givenname: Peer
  surname: Nowack
  fullname: Nowack, Peer
– sequence: 2
  givenname: Lev
  surname: Konstantinovskiy
  fullname: Konstantinovskiy, Lev
– sequence: 3
  givenname: Hannah
  surname: Gardiner
  fullname: Gardiner, Hannah
– sequence: 4
  givenname: John
  surname: Cant
  fullname: Cant, John
BookMark eNotjklLBDEQRoMoqKN3jwHP0WzdSbyJuAy4HfTc1GSZydCTjElE5uB_t1EvVcXHV493jPZTTh6hM0YvOmbkJWwaYZJ0vVCEU8720BHTvSK6k3r__2ZCs0N0XOua0l4yxY_Q9xPYVUwejx5KimmJLYxxUaDFnHAOeMxfxOba8PMLx5Acfn1iFFefai71Ck8WZJz-oWAYl7nEttrU315b-Vhw3GzBNjyxamwetwKpBl9gEcfYdifoIMBY_en_nqH3u9u3mwfy-HI_v7l-JI5L04gzQL0BI1hgQlKnpWHayc5LEZQKnppeB-WlksqohXXgheBuGiClAQFihuZ_XJdhPWxL3EDZDRni8BvkshygtGhHP_Rh4XqpbOgYk12ngGrunFVgOVjgamKd_7G2JX98-tqGdf4sadIfeNdzzqk2XPwAm4t8YA
ContentType Journal Article
Copyright 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 7QH
7TG
7TN
7UA
8FD
8FE
8FG
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H8D
H96
HCIFZ
KL.
L.G
L7M
P5Z
P62
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.5194/amt-14-5637-2021
DatabaseName Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1867-8548
EndPage 5655
ExternalDocumentID oai_doaj_org_article_6fbd647cf5114557a082ddc7ac2aca27
GroupedDBID 23N
5VS
7QH
7TG
7TN
7UA
8FD
8FE
8FG
8FH
8R4
8R5
AAFWJ
ABDBF
ABUWG
ACGFO
ACUHS
ADBBV
AEGXH
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
C1K
CCPQU
D1K
DWQXO
E3Z
ESX
F1W
GROUPED_DOAJ
H13
H8D
H96
HCIFZ
IAO
IEA
ISR
ITC
K6-
KL.
KQ8
L.G
L7M
LK5
M7R
OK1
P2P
P62
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
Q2X
RKB
RNS
TR2
TUS
ID FETCH-LOGICAL-d249t-d9a0e9a931f1340d84918d45e43f77fe0968f7e474797bcdae332de33a449a3a3
IEDL.DBID BENPR
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000687055700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1867-1381
IngestDate Fri Oct 03 12:33:53 EDT 2025
Sun Jul 13 05:17:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d249t-d9a0e9a931f1340d84918d45e43f77fe0968f7e474797bcdae332de33a449a3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2562220892?pq-origsite=%requestingapplication%
PQID 2562220892
PQPubID 105742
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_6fbd647cf5114557a082ddc7ac2aca27
proquest_journals_2562220892
PublicationCentury 2000
PublicationDate 2021-08-18
PublicationDateYYYYMMDD 2021-08-18
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-18
  day: 18
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Atmospheric measurement techniques
PublicationYear 2021
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
SSID ssj0064172
Score 2.4590547
Snippet Low-cost air pollution sensors often fail to attain sufficient performance compared with state-of-the-art measurement stations, and they typically require...
SourceID doaj
proquest
SourceType Open Website
Aggregation Database
StartPage 5637
SubjectTerms Air pollution
Air pollution measurements
Algorithms
Calibration
Costs
Extrapolation
Gaussian process
Humidity
Laboratories
Learning algorithms
Limiting factors
Low cost
Machine learning
Measurement
Methods
Nitrogen dioxide
Particulate emissions
Particulate matter
Performance evaluation
Pollutants
Pollution levels
Regression
Regression analysis
Relocation
Sensors
Stations
Statistical analysis
Suspended particulate matter
Training
Urban areas
SummonAdditionalLinks – databaseName: Copernicus Publications
  dbid: RKB
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQ1QMXoAXEQovmgLhZjR9Z271B1YpDd6kQoN6iie2UlbabKgmteuh_79gJUiUOHOglUt6jmbH9jcf-hrEPooi-xFrzEr3nOgbPayWRl7YJpSpcbXLluZ-nZrm05-fu7EGpr7QmbKQHHhV3MG_qMNfGN4QMdFkapDErBG_QS_Qo0z5ycsPUJL-lGm5jHzzXIpdtSmxtiWVPjAlKQiv6AC8HLki2uTLkIokjNJP1_9UX5wHm5Pl_iPaCPZtQJXwaX9lhT-Jml80WBIjbLs-bw0c4Wq8Ineazl-xukRdRRpiqRlwA2SpFzslO0Dawbm-4b_sBll8l4CbA2UIU0FPQ23b9IWzaDU8AFTvA9UXbrYZfl31-LmceYNx8CfStlJ2GIcPj2I2k4Lev2I-T4-9HX_hUiYEHCs8GHhwW0aFTohFKF8FqJ2zQZdSqMaaJFAfZxkRNsYkztQ8YlZKBDqi1Q4XqNdsiweIbBtJabaWnbq02dK8mhB-iD9rLFLnVesY-J0VXVyPZRpXor_MF0nw1ab76l-ZnbO-PMaupTfYVgTsCQ4V18u1j_OMde5rcJ80vC7vHtobud9xn2_56WPXd--yO93875M0
  priority: 102
  providerName: Copernicus Gesellschaft
– databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQigOXivIQW7ZoDoib1fiRtd1bu6LiwC49AOotmthOu9J2UyWBigP_nbGTSkg9cOESKQ8l1sxk_H1-fMPYe1FEX2KteYnecx2D57WSyEvbhFIVrja58tz3z2azsVdX7vKvUl9pTdgoDzwa7mTZ1GGpjW8IGeiyNEh9VgjeoJfoUeZ95IVxD2RqzMFLLXLZpqTWllT2xDhBSWhFn-DtwAW1bakMhUjSCM1i_Y9yce5gLp6zgwkZwtnYokP2JO5fsPmaQG3b5bFv-ACr3ZYQZj57yX6v80LICFPlh2sgeyf2m2wNbQO79p77th9g80UC7gNcrkUBPRHXtutPgYg_TyATO8Ddddtth5vbPj-XZw9g3EAJ9K40wwxDhrixG4W9f71i3y4-fl194lM1BR6IYg08OCyiQ6dEI5QugtVO2KDLqFVjTBOJy9jGRE38wpnaB4xKyUAH1NqhQvWazahh8Q0Daa220lNqqg3dqwmlh-iD9jKxr1rP2XkyaXU3CmZUScI6XyDHVpNjq385ds4WDw6ppv-qrwigEaAprJNH_-Mbb9mzFAJpjFjYBZsN3Y94zJ76n8O2797lkPoDlK_SQQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Machine learning calibration of low-cost NO2 and PM10 sensors: non-linear algorithms and their impact on site transferability
URI https://www.proquest.com/docview/2562220892
https://doaj.org/article/6fbd647cf5114557a082ddc7ac2aca27
Volume 14
WOSCitedRecordID wos000687055700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAGF
  databaseName: Copernicus Publications
  customDbUrl:
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064172
  issn: 1867-1381
  databaseCode: RKB
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html
  providerName: Copernicus Gesellschaft
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064172
  issn: 1867-1381
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064172
  issn: 1867-1381
  databaseCode: P5Z
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064172
  issn: 1867-1381
  databaseCode: BFMQW
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064172
  issn: 1867-1381
  databaseCode: PCBAR
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064172
  issn: 1867-1381
  databaseCode: BENPR
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064172
  issn: 1867-1381
  databaseCode: PIMPY
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZa6KGX0qdYoMgH1JtF_Mja5oJYBGoFu41QW9FeIsd2tkjLBpIA6qH_vWPHqx4q9cLFku0oGmnG42_G9jcI7dHM29xUguTGWiK8s6TizJBc1S7nma5krDz37VzOZuryUhcp4dala5UrnxgdtWtsyJHvw9YMW1mmNDu8uSWhalQ4XU0lNJ6i9cBUBna-PjmZFRcrXzwWNJZvCqxtgW2PDgeVgFrEvrnuCQUZx1yCqQSu0Eja_49PjhvN6cZjRXyJXiSIiY8Gm3iFnvjlazSaAjpu2phExx_w8eIKoGrsvUG_p_FGpcephMQcg-JCGB2UhpsaL5oHYpuux7PPDJulw8WUZriDCLhpuwO8bJYkoFXTYrOYg0T9z-sufhePIfDwEhPDv4KkuI9Y2bcDQ_ivt-jr6cmX448klWUgDmK1njhtMq-N5rSmXGROCU2VE7kXvJay9hAUqVp6AYGKlpV1xnPOHDRGCG244e_QGgjmNxFmSgnFLPi4SsJcBXDfeeuEZSGMq8QITYJOypuBeaMMXNhxoGnnZVpa5biu3FhIWwN2FHkuDaAa56w0lhlrmByhnZW6yrRAu_Kvrrb-P72NngfrCGlkqnbQWt_e-ffomb3vr7p2N9nbbgzloS3yHzBWfJoW36F3cTb5A4vu5XU
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRJcKJ9ioYAPwM1qYjtrBwlVUKi66mbZQ0HlFBzbWSptNyUJVD3wl_obO3YScUDi1gOXSIkjK5o8zbzx2PMAXsaRM4kuBE20MVQ4a2jBmaaJKm3Co7SQQXnuy0zO5-r4OF1swOVwFsZvqxx8YnDUtjJ-jXwHQzOGskilbPfsB_WqUb66OkhodLA4dBfnmLI1b6cf8P--Ymz_49HeAe1VBajFVKOlNtWRS3XK4zLmIrJKpLGyInGCl1KWDjm9KqUTyLNTWRirHefM4kULkWquOc57AzYFgj0aweZimi2-Dr5_IuIgF-W7xPnufnFXGEWWJHb0aUtjtMmES4Sm700aRAL-igEhsO1v_W8muQt3egpN3nWYvwcbbn0fxhmy_6oORQLymuytTpCKh7sH8DsLO0Yd6SUylgSB6ZcJPChJVZJVdU5N1bRk_okRvbZkkcURaTDDr-rmDVlXa-rZuK6JXi3RAu330ya8F8ospDtpSnAubxnShlzA1V0H9IuH8PlarPEIRvhh7jEQppRQzKAPLySOFZjOWGesMMynqYUYw3uPgfys6yyS-17f4UFVL_PedeSTsrATIU2J3FgkidTI2qw1UhumjWZyDNsDPPLeATX5H2w8-ffwC7h1cJTN8tl0fvgUbntk-iXzWG3DqK1_umdw0_xqT5r6eY91At-uG0tXT4s9bA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLUJc-EZsKeADcLM2sZ21g4QQ_VhRtRtWCFBvqWM7S6Xtpk0CVQ_8MX4dYycRByRuPXCJlDiKosnLzHseewbgZRw5k-hC0EQbQ4WzhhacaZqo0iY8SgsZOs99PZJZpo6P08UG_Br2wvhllYNPDI7aVsbPkU8wNGMoi1TKJmW_LGKxN3t3fkF9BymfaR3aaXQQOXRXlyjfmrcHe_itXzE22_-8-4H2HQaoRdnRUpvqyKU65XEZcxFZJdJYWZE4wUspS4f8XpXSCeTcqSyM1Y5zZvGghUg11xyfewM2JUfRM4LNnf1s8WmIA1MRh9ZRvmKcr_QXd0lSZExios9aGqN9plwiTH2d0tAw4K94EILc7O7_bJ57cKen1uR99y_chw23fgDjOaqCqg7JA_Ka7K5OkaKHs4fwcx5WkjrSt85YEgSsnz7wYCVVSVbVJTVV05LsIyN6bcliHkekQeVf1c0bsq7W1LN0XRO9WqIF2m9nTbgvpF9ItwOV4LO8ZUgbNIKru8roV4_gy7VY4zGM8MXcEyBMKaGYQd9eSBwrUOZYZ6wwzMvXQoxhx-MhP-8qjuS-Bni4UNXLvHcp-bQs7FRIUyJnFkkiNbI5a43UhmmjmRzD9gCVvHdMTf4HJ1v_Hn4BtxBA-dFBdvgUbnuQ-pn0WG3DqK2_u2dw0_xoT5v6eQ97AifXDaXfzEBGBg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+calibration+of+low-cost+NO2+and+PM10+sensors%3A+non-linear+algorithms+and+their+impact+on+site+transferability&rft.jtitle=Atmospheric+measurement+techniques&rft.au=Nowack%2C+Peer&rft.au=Konstantinovskiy%2C+Lev&rft.au=Gardiner%2C+Hannah&rft.au=Cant%2C+John&rft.date=2021-08-18&rft.pub=Copernicus+GmbH&rft.issn=1867-1381&rft.eissn=1867-8548&rft.volume=14&rft.issue=8&rft.spage=5637&rft.epage=5655&rft_id=info:doi/10.5194%2Famt-14-5637-2021&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-1381&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-1381&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-1381&client=summon