Acoustic spin skyrmion molecule lattices enabling stable transport and flexible manipulation

Skyrmions—topologically protected nanoscale spin textures with vortex-like configurations—hold transformative potential for ultra-dense data storage, spintronics and quantum computing. However, their practical utility is challenged by dynamic instability, complex interaction, and the lack of determi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications Jg. 16; H. 1; S. 10607 - 9
Hauptverfasser: Liu, Lei, Zhang, Xiujuan, Lu, Ming-Hui, Chen, Yan-Feng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 26.11.2025
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2041-1723, 2041-1723
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Skyrmions—topologically protected nanoscale spin textures with vortex-like configurations—hold transformative potential for ultra-dense data storage, spintronics and quantum computing. However, their practical utility is challenged by dynamic instability, complex interaction, and the lack of deterministic control. Here, we introduce a skyrmion molecule lattice, a novel architecture where pairs of skyrmions with opposite polarizability are symmetry-locked into stable molecule configurations. These molecules emerge as propagating eigenstates of the system, enabling robust transport. Using a boundary engineering technique, we achieve deterministic control over skyrmion creation, deformation, annihilation, and polarizability inversion. This is experimentally demonstrated in a graphene-inspired acoustic surface wave metamaterial by harnessing topological acoustic spin structures. Our work, leveraging symmetry principles, establishes a universal framework for stabilizing, transporting and manipulating the skyrmion quasiparticles. The authors introduce a skyrmion molecule lattice, where pairs of skyrmions with opposite polarizability are symmetry locked into stable molecule configurations. The authors achieve deterministic control over skyrmion creation, deformation, annihilation, and polarizability inversion.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-025-65611-4