FPGA Implementation of L1/2 Sparsity Constrained Nonnegative Matrix Factorization Algorithm for Remotely Sensed Hyperspectral Image Analysis
Remotely sensed hyperspectral images provide data of the earth's surface components. The data provided is collected through airborne devices such as satellites with the capability to collect large amounts of data to be sent to ground stations for processing. The main disadvantage of this scenar...
Uloženo v:
| Vydáno v: | IEEE access Ročník 8; s. 12069 - 12083 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!