The Dual Model under pressure: how robust is leak detection under uncertainties and model-mismatches
This paper investigates the robustness of one innovative model-based method for leak detection, namely the dual model. We evaluate the algorithm's performance under various leakage scenarios in the L-Town network, despite uncertainties and model mismatches in (i) base demand, (ii) pipe roughnes...
Uložené v:
| Vydané v: | Engineering proceedings Ročník 69; číslo 1; s. 89 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
MDPI
09.09.2024
MDPI AG |
| Predmet: | |
| ISSN: | 2673-4591 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper investigates the robustness of one innovative model-based method for leak detection, namely the dual model. We evaluate the algorithm's performance under various leakage scenarios in the L-Town network, despite uncertainties and model mismatches in (i) base demand, (ii) pipe roughness, (iii) number of sensors, and (iv) network topology. Our investigation results indicate that the Dual Model is highly sensitive to discrepancies in the first three parameters. However, the impact can be mitigated through sensor-specific calibration, such as adjusting sensor elevations. Moreover, the Dual Model has demonstrated robustness to minor topology mismatches, like those introduced by closed valves. |
|---|---|
| AbstractList | This paper investigates the robustness of one innovative model-based method for leak detection, namely the Dual Model. We evaluate the algorithm’s performance under various leakage scenarios in the L-Town network, despite uncertainties and model mismatches in (i) base demand, (ii) pipe roughness, (iii) the number of sensors, and (iv) network topology. Our investigation results indicate that the Dual Model is highly sensitive to discrepancies in the first three parameters. However, the impact can be mitigated through sensor-specific calibration, such as adjusting sensor elevations. Moreover, the Dual Model has demonstrated robustness to minor topology mismatches, like those introduced by closed valves. This paper investigates the robustness of one innovative model-based method for leak detection, namely the dual model. We evaluate the algorithm's performance under various leakage scenarios in the L-Town network, despite uncertainties and model mismatches in (i) base demand, (ii) pipe roughness, (iii) number of sensors, and (iv) network topology. Our investigation results indicate that the Dual Model is highly sensitive to discrepancies in the first three parameters. However, the impact can be mitigated through sensor-specific calibration, such as adjusting sensor elevations. Moreover, the Dual Model has demonstrated robustness to minor topology mismatches, like those introduced by closed valves. |
| Author | Campbell, Enrique Steffelbauer, David B Abraham, Edo Piller, Olivier Koslowski, Johannes |
| Author_xml | – sequence: 1 givenname: Enrique surname: Campbell fullname: Campbell, Enrique organization: Kompetenzzentrum Wasser Berlin, Berlin, Germany – sequence: 2 givenname: Edo surname: Abraham fullname: Abraham, Edo organization: Delft University of Technology – sequence: 3 givenname: Johannes surname: Koslowski fullname: Koslowski, Johannes organization: Kompetenzzentrum Wasser Berlin, Berlin, Germany – sequence: 4 givenname: Olivier orcidid: 0000-0002-3625-7639 surname: Piller fullname: Piller, Olivier organization: Environnement, territoires en transition, infrastructures, sociétés – sequence: 5 givenname: David surname: Steffelbauer middlename: B fullname: Steffelbauer, David B organization: Kompetenzzentrum Wasser Berlin, Berlin, Germany |
| BackLink | https://hal.inrae.fr/hal-04646743$$DView record in HAL |
| BookMark | eNpVzr1OwzAUBWALgUQpfQA2rwwBx9dJaraq_LRSEUuZoxv7uklJ48pOQLw9hXZhOtLR0adzxc473xFjN6m4A9DinrrNPngjhVQi12Kqz9hI5gUkKtPpJZvEuBVCyCyVCmDE7Lom_jhgy1-9pZYPnaXA94FiHAI98Np_8eCrIfa8ibwl_OCWejJ947vTeOgMhR6brm8ocuws3_1Sya6JO-xNTfGaXThsI01OOWbvz0_r-SJZvb0s57NVYmUKOsnASaWnVYHakdQoU3SFsFVuMoBMQypcdjiuHIEhrY12FUgDmcu1soAEY7Y8utbjttyHZofhu_TYlH-FD5sSQ9-YlkpZoMmtEsISKF1UaCqBonJU6DSHTB6s26NVY_uPWsxW5W8nVK7yQsFnCj9RDnVk |
| ContentType | Journal Article |
| Copyright | Attribution |
| Copyright_xml | – notice: Attribution |
| DBID | 1XC VOOES DOA |
| DOI | 10.3390/engproc2024069089 |
| DatabaseName | Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Directory of Open Access Journals |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2673-4591 |
| ExternalDocumentID | oai_doaj_org_article_27ac6d400de3497bacb0a0bfe7916352 oai:HAL:hal-04646743v1 |
| GroupedDBID | 1XC AADQD AFZYC ALMA_UNASSIGNED_HOLDINGS ARCSS GROUPED_DOAJ OK1 VOOES |
| ID | FETCH-LOGICAL-d2139-53f2498b7a9fe29a21af70db6c53359310f52514fe3ce99c9fb32c35f694d3ae3 |
| IEDL.DBID | DOA |
| IngestDate | Fri Oct 03 12:19:51 EDT 2025 Tue Oct 14 20:42:59 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Robustness Simulation model Leak detection Dual model |
| Language | English |
| License | Attribution: http://creativecommons.org/licenses/by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-d2139-53f2498b7a9fe29a21af70db6c53359310f52514fe3ce99c9fb32c35f694d3ae3 |
| ORCID | 0000-0002-3625-7639 |
| OpenAccessLink | https://doaj.org/article/27ac6d400de3497bacb0a0bfe7916352 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_27ac6d400de3497bacb0a0bfe7916352 hal_primary_oai_HAL_hal_04646743v1 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-09-09 |
| PublicationDateYYYYMMDD | 2024-09-09 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-09 day: 09 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering proceedings |
| PublicationYear | 2024 |
| Publisher | MDPI MDPI AG |
| Publisher_xml | – name: MDPI – name: MDPI AG |
| SSID | ssj0002512433 |
| Score | 2.2675464 |
| Snippet | This paper investigates the robustness of one innovative model-based method for leak detection, namely the dual model. We evaluate the algorithm's performance... This paper investigates the robustness of one innovative model-based method for leak detection, namely the Dual Model. We evaluate the algorithm’s performance... |
| SourceID | doaj hal |
| SourceType | Open Website Open Access Repository |
| StartPage | 89 |
| SubjectTerms | Civil Engineering Computer Science dual model Engineering Sciences leak detection Modeling and Simulation Operations Research robustness simulation model |
| Title | The Dual Model under pressure: how robust is leak detection under uncertainties and model-mismatches |
| URI | https://hal.inrae.fr/hal-04646743 https://doaj.org/article/27ac6d400de3497bacb0a0bfe7916352 |
| Volume | 69 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals databaseCode: DOA dateStart: 20200101 customDbUrl: isFulltext: true eissn: 2673-4591 dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: false ssIdentifier: ssj0002512433 providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EPHgRRcX6YhGvoeluXutFqrVUqEXESm9hn1qUVJK0_n1nNhHqyYvXIUySmd2db3ZehFwmPI20S1UQiZDjbZUNJI9EwI0MsX-5E35-yss4nUyy2Uw8ro36wpywpj1wI7guS6VODKw0Y4FHqqRWoQyVsykAG0APePoC6llzpvAMRqsdcd6EMTn49V1bvKJJYKGv9QxxrLtv0g825e3nDtXblOEu2WnBIO03H7FHNmyxTyxojg6WQMc5ZR8Uq7xK2pTxlfaKjhZf9GmhllVN7ys6tvKdDmztM6qK9uEpaNJH-rFbKpWFaVk9zCsAqDgi6_qATId3z7ejoB2GEBgGKC2IuQNPKVOpFM4yIVlPujQ0KtEA2GIBKM3F8NeRs1xbIbRwijPNY5eIyHBp-SHZLBaFPSI0Cx1LWBQrYzAOaCVsXAVQI9Gw3ZMs7pAblEz-2fS7yLEDtSeAXvJWL_lfeumQC5DrLx6j_jhHGkZTsfZh1Tv-jzedkG3Uqk_8Eqdksy6X9oxs6VU9r8pzvy6-AaIavEs |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Dual+Model+under+Pressure%3A+How+Robust+Is+Leak+Detection+under+Uncertainties+and+Model+Mismatches%3F&rft.jtitle=Engineering+proceedings&rft.au=Enrique+Campbell&rft.au=Edo+Abraham&rft.au=Johannes+Koslowski&rft.au=Olivier+Piller&rft.date=2024-09-09&rft.pub=MDPI+AG&rft.eissn=2673-4591&rft.volume=69&rft.issue=1&rft.spage=89&rft_id=info:doi/10.3390%2Fengproc2024069089&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_27ac6d400de3497bacb0a0bfe7916352 |