The Dual Model under pressure: how robust is leak detection under uncertainties and model-mismatches

This paper investigates the robustness of one innovative model-based method for leak detection, namely the dual model. We evaluate the algorithm's performance under various leakage scenarios in the L-Town network, despite uncertainties and model mismatches in (i) base demand, (ii) pipe roughnes...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Engineering proceedings Ročník 69; číslo 1; s. 89
Hlavní autori: Campbell, Enrique, Abraham, Edo, Koslowski, Johannes, Piller, Olivier, Steffelbauer, David B
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: MDPI 09.09.2024
MDPI AG
Predmet:
ISSN:2673-4591
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper investigates the robustness of one innovative model-based method for leak detection, namely the dual model. We evaluate the algorithm's performance under various leakage scenarios in the L-Town network, despite uncertainties and model mismatches in (i) base demand, (ii) pipe roughness, (iii) number of sensors, and (iv) network topology. Our investigation results indicate that the Dual Model is highly sensitive to discrepancies in the first three parameters. However, the impact can be mitigated through sensor-specific calibration, such as adjusting sensor elevations. Moreover, the Dual Model has demonstrated robustness to minor topology mismatches, like those introduced by closed valves.
AbstractList This paper investigates the robustness of one innovative model-based method for leak detection, namely the Dual Model. We evaluate the algorithm’s performance under various leakage scenarios in the L-Town network, despite uncertainties and model mismatches in (i) base demand, (ii) pipe roughness, (iii) the number of sensors, and (iv) network topology. Our investigation results indicate that the Dual Model is highly sensitive to discrepancies in the first three parameters. However, the impact can be mitigated through sensor-specific calibration, such as adjusting sensor elevations. Moreover, the Dual Model has demonstrated robustness to minor topology mismatches, like those introduced by closed valves.
This paper investigates the robustness of one innovative model-based method for leak detection, namely the dual model. We evaluate the algorithm's performance under various leakage scenarios in the L-Town network, despite uncertainties and model mismatches in (i) base demand, (ii) pipe roughness, (iii) number of sensors, and (iv) network topology. Our investigation results indicate that the Dual Model is highly sensitive to discrepancies in the first three parameters. However, the impact can be mitigated through sensor-specific calibration, such as adjusting sensor elevations. Moreover, the Dual Model has demonstrated robustness to minor topology mismatches, like those introduced by closed valves.
Author Campbell, Enrique
Steffelbauer, David B
Abraham, Edo
Piller, Olivier
Koslowski, Johannes
Author_xml – sequence: 1
  givenname: Enrique
  surname: Campbell
  fullname: Campbell, Enrique
  organization: Kompetenzzentrum Wasser Berlin, Berlin, Germany
– sequence: 2
  givenname: Edo
  surname: Abraham
  fullname: Abraham, Edo
  organization: Delft University of Technology
– sequence: 3
  givenname: Johannes
  surname: Koslowski
  fullname: Koslowski, Johannes
  organization: Kompetenzzentrum Wasser Berlin, Berlin, Germany
– sequence: 4
  givenname: Olivier
  orcidid: 0000-0002-3625-7639
  surname: Piller
  fullname: Piller, Olivier
  organization: Environnement, territoires en transition, infrastructures, sociétés
– sequence: 5
  givenname: David
  surname: Steffelbauer
  middlename: B
  fullname: Steffelbauer, David B
  organization: Kompetenzzentrum Wasser Berlin, Berlin, Germany
BackLink https://hal.inrae.fr/hal-04646743$$DView record in HAL
BookMark eNpVzr1OwzAUBWALgUQpfQA2rwwBx9dJaraq_LRSEUuZoxv7uklJ48pOQLw9hXZhOtLR0adzxc473xFjN6m4A9DinrrNPngjhVQi12Kqz9hI5gUkKtPpJZvEuBVCyCyVCmDE7Lom_jhgy1-9pZYPnaXA94FiHAI98Np_8eCrIfa8ibwl_OCWejJ947vTeOgMhR6brm8ocuws3_1Sya6JO-xNTfGaXThsI01OOWbvz0_r-SJZvb0s57NVYmUKOsnASaWnVYHakdQoU3SFsFVuMoBMQypcdjiuHIEhrY12FUgDmcu1soAEY7Y8utbjttyHZofhu_TYlH-FD5sSQ9-YlkpZoMmtEsISKF1UaCqBonJU6DSHTB6s26NVY_uPWsxW5W8nVK7yQsFnCj9RDnVk
ContentType Journal Article
Copyright Attribution
Copyright_xml – notice: Attribution
DBID 1XC
VOOES
DOA
DOI 10.3390/engproc2024069089
DatabaseName Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Directory of Open Access Journals
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2673-4591
ExternalDocumentID oai_doaj_org_article_27ac6d400de3497bacb0a0bfe7916352
oai:HAL:hal-04646743v1
GroupedDBID 1XC
AADQD
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARCSS
GROUPED_DOAJ
OK1
VOOES
ID FETCH-LOGICAL-d2139-53f2498b7a9fe29a21af70db6c53359310f52514fe3ce99c9fb32c35f694d3ae3
IEDL.DBID DOA
IngestDate Fri Oct 03 12:19:51 EDT 2025
Tue Oct 14 20:42:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Robustness
Simulation model
Leak detection
Dual model
Language English
License Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d2139-53f2498b7a9fe29a21af70db6c53359310f52514fe3ce99c9fb32c35f694d3ae3
ORCID 0000-0002-3625-7639
OpenAccessLink https://doaj.org/article/27ac6d400de3497bacb0a0bfe7916352
ParticipantIDs doaj_primary_oai_doaj_org_article_27ac6d400de3497bacb0a0bfe7916352
hal_primary_oai_HAL_hal_04646743v1
PublicationCentury 2000
PublicationDate 2024-09-09
PublicationDateYYYYMMDD 2024-09-09
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-09
  day: 09
PublicationDecade 2020
PublicationTitle Engineering proceedings
PublicationYear 2024
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
SSID ssj0002512433
Score 2.2675464
Snippet This paper investigates the robustness of one innovative model-based method for leak detection, namely the dual model. We evaluate the algorithm's performance...
This paper investigates the robustness of one innovative model-based method for leak detection, namely the Dual Model. We evaluate the algorithm’s performance...
SourceID doaj
hal
SourceType Open Website
Open Access Repository
StartPage 89
SubjectTerms Civil Engineering
Computer Science
dual model
Engineering Sciences
leak detection
Modeling and Simulation
Operations Research
robustness
simulation model
Title The Dual Model under pressure: how robust is leak detection under uncertainties and model-mismatches
URI https://hal.inrae.fr/hal-04646743
https://doaj.org/article/27ac6d400de3497bacb0a0bfe7916352
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  databaseCode: DOA
  dateStart: 20200101
  customDbUrl:
  isFulltext: true
  eissn: 2673-4591
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0002512433
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EPHgRRcX6YhGvoeluXutFqrVUqEXESm9hn1qUVJK0_n1nNhHqyYvXIUySmd2db3ZehFwmPI20S1UQiZDjbZUNJI9EwI0MsX-5E35-yss4nUyy2Uw8ro36wpywpj1wI7guS6VODKw0Y4FHqqRWoQyVsykAG0APePoC6llzpvAMRqsdcd6EMTn49V1bvKJJYKGv9QxxrLtv0g825e3nDtXblOEu2WnBIO03H7FHNmyxTyxojg6WQMc5ZR8Uq7xK2pTxlfaKjhZf9GmhllVN7ys6tvKdDmztM6qK9uEpaNJH-rFbKpWFaVk9zCsAqDgi6_qATId3z7ejoB2GEBgGKC2IuQNPKVOpFM4yIVlPujQ0KtEA2GIBKM3F8NeRs1xbIbRwijPNY5eIyHBp-SHZLBaFPSI0Cx1LWBQrYzAOaCVsXAVQI9Gw3ZMs7pAblEz-2fS7yLEDtSeAXvJWL_lfeumQC5DrLx6j_jhHGkZTsfZh1Tv-jzedkG3Uqk_8Eqdksy6X9oxs6VU9r8pzvy6-AaIavEs
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Dual+Model+under+Pressure%3A+How+Robust+Is+Leak+Detection+under+Uncertainties+and+Model+Mismatches%3F&rft.jtitle=Engineering+proceedings&rft.au=Enrique+Campbell&rft.au=Edo+Abraham&rft.au=Johannes+Koslowski&rft.au=Olivier+Piller&rft.date=2024-09-09&rft.pub=MDPI+AG&rft.eissn=2673-4591&rft.volume=69&rft.issue=1&rft.spage=89&rft_id=info:doi/10.3390%2Fengproc2024069089&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_27ac6d400de3497bacb0a0bfe7916352