A Bit-Parallel Tabu Search Algorithm for Finding Es2-Optimal and Minimax-Optimal Supersaturated Designs
We prove the equivalence of two-symbol supersaturated designs (SSDs) with N (even) rows, m columns, and smax=4t+i, where i∈0,2 and t∈ℤ≥0 and resolvable incomplete block designs (RIBDs) whose any two blocks intersect in at most N+4t+i/4 points. Using this equivalence, we formulate the search for two-...
Uloženo v:
| Vydáno v: | Computational and mathematical methods Ročník 2023 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken
Hindawi
2023
John Wiley & Sons, Inc Wiley |
| Témata: | |
| ISSN: | 2577-7408, 2577-7408 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We prove the equivalence of two-symbol supersaturated designs (SSDs) with N (even) rows, m columns, and smax=4t+i, where i∈0,2 and t∈ℤ≥0 and resolvable incomplete block designs (RIBDs) whose any two blocks intersect in at most N+4t+i/4 points. Using this equivalence, we formulate the search for two-symbol Es2-optimal and minimax-optimal SSDs with smax∈2,4,6 as a search for RIBDs whose blocks intersect accordingly. This allows developing a bit-parallel tabu search (TS) algorithm. The TS algorithm found Es2-optimal and minimax-optimal SSDs achieving the sharpest known Es2 lower bound with smax∈2,4,6 of sizes N,m=16,25, (16, 26), (16, 27), (18, 23), (18, 24), (18, 25), (18, 26), (18, 27), (18, 28), (18, 29), (20, 21), (22, 22), (22, 23), (24, 24), and (24, 25). In each of these cases, no such SSD could previously be found. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2577-7408 2577-7408 |
| DOI: | 10.1155/2023/9431476 |