Predicting the Learning Performance of Minority Students in a Vietnamese High School Using Artificial Intelligence Algorithms

This study aims to predict and discover important factors for the learning performance of students belonging to two ethnic groups—Khmer and Chinese (Hoa) students—in Soc Trang with the use of random forest (RF) and Gaussian Naïve Bayes (GNB) classifiers based on students’ demographics and grade poin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering proceedings Jg. 98; H. 1; S. 22
Hauptverfasser: Hai-Duy Le, Thao-Trang Huynh-Cam, Long-Sheng Chen, Vo Phan Thu Ngan, Tzu-Chuen Lu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: MDPI AG 01.06.2025
Schlagworte:
ISSN:2673-4591
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This study aims to predict and discover important factors for the learning performance of students belonging to two ethnic groups—Khmer and Chinese (Hoa) students—in Soc Trang with the use of random forest (RF) and Gaussian Naïve Bayes (GNB) classifiers based on students’ demographics and grade point average (GPA) scores. The study involved 174 Khmer and Chinese (Hoa) students in Grade 10 in a high school in Soc Trang Province, Vietnam. The results showed that, for Khmer students, GNB was better than RF, with an F1 score of 100%. Mathematics was the most important subject leading Khmer students to very good or poor performance. For Chinese (Hoa) students, both classifiers showed the same accuracy performance. Scores in Literature and English in Semester 1 impacted Chinese (Hoa) students’ performance. The results of this study provide a reference for formulating a policy to improve the learning performance of minority students to prevent dropouts.
AbstractList This study aims to predict and discover important factors for the learning performance of students belonging to two ethnic groups—Khmer and Chinese (Hoa) students—in Soc Trang with the use of random forest (RF) and Gaussian Naïve Bayes (GNB) classifiers based on students’ demographics and grade point average (GPA) scores. The study involved 174 Khmer and Chinese (Hoa) students in Grade 10 in a high school in Soc Trang Province, Vietnam. The results showed that, for Khmer students, GNB was better than RF, with an F1 score of 100%. Mathematics was the most important subject leading Khmer students to very good or poor performance. For Chinese (Hoa) students, both classifiers showed the same accuracy performance. Scores in Literature and English in Semester 1 impacted Chinese (Hoa) students’ performance. The results of this study provide a reference for formulating a policy to improve the learning performance of minority students to prevent dropouts.
Author Long-Sheng Chen
Tzu-Chuen Lu
Thao-Trang Huynh-Cam
Hai-Duy Le
Vo Phan Thu Ngan
Author_xml – sequence: 1
  fullname: Hai-Duy Le
  organization: Thuan Hoa High School, Hue City 952410, Vietnam
– sequence: 2
  fullname: Thao-Trang Huynh-Cam
  organization: Department of Information Management, Chaoyang University of Technology, Taichung 413310, Taiwan
– sequence: 3
  fullname: Long-Sheng Chen
  organization: Department of Industrial Engineering and Management, National Taipei University of Technology, Taipei 106344, Taiwan
– sequence: 4
  fullname: Vo Phan Thu Ngan
  organization: Foreign Languages Faculty, Dong Thap University, Cao Lanh City 81118, Vietnam
– sequence: 5
  fullname: Tzu-Chuen Lu
  organization: Department of Information Management, Chaoyang University of Technology, Taichung 413310, Taiwan
BookMark eNotjt9KwzAchYMoOOcewLu8QDVN0qa5HEPdYOJgztuSP7-0GW0y0nqxC9_dVb06nO_Ax7lD1yEGQOghJ4-MSfIEoTmlaCihBZEVofQKzWgpWMYLmd-ixTAcCbmMOeWMzdD3LoH1ZvShwWMLeAsqhansILmYehUM4Ojwmw8x-fGM9-OXhTAO2Aes8KeHMageBsBr37R4b9oYO3wYJsUyjd5541WHN2GErvMNTLpl10yuth_u0Y1T3QCL_5yjw8vzx2qdbd9fN6vlNrN5ldPMGJc7wYU22uqqsJJaKkmeXyBQTgUttLRC0sKBI-AYASqckqC0drwQks3R5s9rozrWp-R7lc51VL7-BTE1tbqcNR3UWoOwlXCFkYaXXGlTGiZKqjkYzpxkP50Wchg
ContentType Journal Article
DBID DOA
DOI 10.3390/engproc2025098022
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2673-4591
ExternalDocumentID oai_doaj_org_article_bbe7d87f5c9c464abc6c3762b4ec43f9
GroupedDBID AADQD
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARCSS
GROUPED_DOAJ
OK1
ID FETCH-LOGICAL-d1812-ccf1f747bcbdb85d92d290111f7e242725b9d7925fef0ef30e27fa9eabbf45793
IEDL.DBID DOA
IngestDate Fri Oct 03 12:52:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d1812-ccf1f747bcbdb85d92d290111f7e242725b9d7925fef0ef30e27fa9eabbf45793
OpenAccessLink https://doaj.org/article/bbe7d87f5c9c464abc6c3762b4ec43f9
ParticipantIDs doaj_primary_oai_doaj_org_article_bbe7d87f5c9c464abc6c3762b4ec43f9
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Engineering proceedings
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
SSID ssj0002512433
Score 2.292973
Snippet This study aims to predict and discover important factors for the learning performance of students belonging to two ethnic groups—Khmer and Chinese (Hoa)...
SourceID doaj
SourceType Open Website
StartPage 22
SubjectTerms artificial intelligence algorithms
Chinese (Hoa) students
high-school minority students
Khmer students
learning performance
learning performance predictions
Title Predicting the Learning Performance of Minority Students in a Vietnamese High School Using Artificial Intelligence Algorithms
URI https://doaj.org/article/bbe7d87f5c9c464abc6c3762b4ec43f9
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  databaseCode: DOA
  dateStart: 20200101
  customDbUrl:
  isFulltext: true
  eissn: 2673-4591
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0002512433
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iHryIouKbOXhdus3msTlWsejBUvBBb8smmdQF3UpbvfnfzWwK1pMXrzlMYCbJN8N8-Yaxyzym_Mr1eeaE1plQzmcWS5nVtdZG6Vw5WXfDJvRoVE4mZrw26os4YUkeODmuZy1qX-ognXFCido65eKl4FagE0Xovu7l2qwVU_QGE2qLokhtzCLW9T1spwQJnDDf0P_SXyL9HZoMd9nOKg2EQdp-j21gu8--xnNqmxARGWJeBivt0ymMf9j9MAtw37QzmjkHD0mYcgFNCzU8N7hsifSKQOwNSAKb0JECup2SWATcralwwuB1SrZe3hYH7Gl483h9m63GI2SeYDlzLvRDrAass96W0hvuqSnaj4sYgVdzaY3XhsuAIcdQ5Mh1qA3W1gYh4708ZJvtrMUjBiGmQWhKr4LgAm0onVcYZDxl0kTviWN2Rb6q3pMCRkWa1N1CjFS1ilT1V6RO_sPIKdumECay1hnbXM4_8Jxtuc9ls5hfdIfgG4JavQI
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+the+Learning+Performance+of+Minority+Students+in+a+Vietnamese+High+School+Using+Artificial+Intelligence+Algorithms&rft.jtitle=Engineering+proceedings&rft.au=Hai-Duy+Le&rft.au=Thao-Trang+Huynh-Cam&rft.au=Long-Sheng+Chen&rft.au=Vo+Phan+Thu+Ngan&rft.date=2025-06-01&rft.pub=MDPI+AG&rft.eissn=2673-4591&rft.volume=98&rft.issue=1&rft.spage=22&rft_id=info:doi/10.3390%2Fengproc2025098022&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bbe7d87f5c9c464abc6c3762b4ec43f9