A Performance Comparison of Shortest Path Algorithms in Directed Graphs

This study examines the performance characteristics of four commonly used short-path algorithms, including Dijkstra, Bellman–Ford, Floyd–Warshall, and Dantzig, on randomly generated directed graphs. We analyze theoretical computational complexity and empirical execution time using a custom-built tes...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Engineering proceedings Ročník 100; číslo 1; s. 31
Hlavní autori: Fatima Sapundzhi, Kristiyan Danev, Antonina Ivanova, Metodi Popstoilov, Slavi Georgiev
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: MDPI AG 01.07.2025
Predmet:
ISSN:2673-4591
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This study examines the performance characteristics of four commonly used short-path algorithms, including Dijkstra, Bellman–Ford, Floyd–Warshall, and Dantzig, on randomly generated directed graphs. We analyze theoretical computational complexity and empirical execution time using a custom-built testing framework. The experimental results demonstrate significant performance differences across varying graph densities and sizes, with Dijkstra’s algorithm showing superior performance for sparse graphs while Floyd–Warshall and Dantzig provide more consistent performance for dense graphs. Time complexity analysis confirms the theoretical expectations: Dijkstra’s algorithm performs best on sparse graphs with O (E + V log V) complexity, Bellman–Ford shows O (V · E) complexity suitable for graphs with negative edges, while Floyd–Warshall and Dantzig both demonstrate O(V3) complexity that becomes efficient for dense graphs. This research provides practical insights for algorithm selection based on specific graph properties, guiding developers and researchers in choosing the most efficient algorithm for their particular graph structure requirements.
AbstractList This study examines the performance characteristics of four commonly used short-path algorithms, including Dijkstra, Bellman–Ford, Floyd–Warshall, and Dantzig, on randomly generated directed graphs. We analyze theoretical computational complexity and empirical execution time using a custom-built testing framework. The experimental results demonstrate significant performance differences across varying graph densities and sizes, with Dijkstra’s algorithm showing superior performance for sparse graphs while Floyd–Warshall and Dantzig provide more consistent performance for dense graphs. Time complexity analysis confirms the theoretical expectations: Dijkstra’s algorithm performs best on sparse graphs with O (E + V log V) complexity, Bellman–Ford shows O (V · E) complexity suitable for graphs with negative edges, while Floyd–Warshall and Dantzig both demonstrate O(V3) complexity that becomes efficient for dense graphs. This research provides practical insights for algorithm selection based on specific graph properties, guiding developers and researchers in choosing the most efficient algorithm for their particular graph structure requirements.
Author Slavi Georgiev
Fatima Sapundzhi
Metodi Popstoilov
Kristiyan Danev
Antonina Ivanova
Author_xml – sequence: 1
  fullname: Fatima Sapundzhi
  organization: Department of Communication and Computer Engineering, Faculty of Engineering, South-West University “Neofit Rilski”, 66 Ivan Myhailov Str., 2700 Blagoevgrad, Bulgaria
– sequence: 2
  fullname: Kristiyan Danev
  organization: Department of Computer Science, Faculty of Social, Business and Computer Sciences, Varna Free University “Chernorizets Hrabar”, 84 Yanko Slavchev Str., Chaika Resort, 9007 Varna, Bulgaria
– sequence: 3
  fullname: Antonina Ivanova
  organization: Department of Computer Science, Faculty of Social, Business and Computer Sciences, Varna Free University “Chernorizets Hrabar”, 84 Yanko Slavchev Str., Chaika Resort, 9007 Varna, Bulgaria
– sequence: 4
  fullname: Metodi Popstoilov
  organization: Department of Communication and Computer Engineering, Faculty of Engineering, South-West University “Neofit Rilski”, 66 Ivan Myhailov Str., 2700 Blagoevgrad, Bulgaria
– sequence: 5
  fullname: Slavi Georgiev
  organization: Department of Applied Mathematics and Statistics, Faculty of Natural Sciences and Education, University of Ruse, 8 Studentska Str., 7004 Ruse, Bulgaria
BookMark eNotjNFKwzAYRoMoOOcewLu8QDXJn7TJ5Zg6BwMH6nVJkz9rxtqUpDe-vUO9OnDOx3dHrsc0IiEPnD0CGPaE43HKyQkmFGeMAb8iC1E3UEll-C1ZlXK66EsUEmBBtmt6wBxSHuzokG7SMNkcSxppCvSjT3nGMtODnXu6Ph9TjnM_FBpH-hwzuhk93WY79eWe3AR7Lrj655J8vb58bt6q_ft2t1nvK8815xW3IBQaZb1jwjnwXae1Zl4FxUFbpZz0wTToRNcEeVmCqnVnwIYgvehqWJLd369P9tROOQ42f7fJxvZXpHxsbZ6jO2Pb1M6g1iboBiUopYXBppbces091AF-ACz_XE8
ContentType Journal Article
DBID DOA
DOI 10.3390/engproc2025100031
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2673-4591
ExternalDocumentID oai_doaj_org_article_76c9e889f87e4355829e7641ad81d36f
GroupedDBID AADQD
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARCSS
GROUPED_DOAJ
OK1
ID FETCH-LOGICAL-d1811-1a325e95adc02cc3dbb8880d5f5138a55c4df97ec2b7f45e93568b93aff4d2b63
IEDL.DBID DOA
IngestDate Fri Oct 03 12:52:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d1811-1a325e95adc02cc3dbb8880d5f5138a55c4df97ec2b7f45e93568b93aff4d2b63
OpenAccessLink https://doaj.org/article/76c9e889f87e4355829e7641ad81d36f
ParticipantIDs doaj_primary_oai_doaj_org_article_76c9e889f87e4355829e7641ad81d36f
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Engineering proceedings
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
SSID ssj0002512433
Score 2.2960043
Snippet This study examines the performance characteristics of four commonly used short-path algorithms, including Dijkstra, Bellman–Ford, Floyd–Warshall, and Dantzig,...
SourceID doaj
SourceType Open Website
StartPage 31
SubjectTerms Bellman–Ford
Dantzig
Dijkstra
Floyd–Warshall
graph theory
shortest path algorithms
Title A Performance Comparison of Shortest Path Algorithms in Directed Graphs
URI https://doaj.org/article/76c9e889f87e4355829e7641ad81d36f
Volume 100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  databaseCode: DOA
  dateStart: 20200101
  customDbUrl:
  isFulltext: true
  eissn: 2673-4591
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0002512433
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA1SPHgRRcVvcvC6tPnaJMdabD1IKajQ25KPSVvQrXRbf7_Jpmg9efGahA37hp15jx3eIHRXgokknrMCJIeCW8oLS8pkBGmkoDwICK2J65Mcj9V0qic7o75ST1i2B87AdWXpNCilg5LAkxc41SBLToyPTIuVIWXfntQ7Yirl4FS1OWP5NyaLur4L9SyVBJq2khAgv0z622oyPEKHWxqI-_n6Y7QH9Qka9fHkp48fD75HBOJlwM_z1BbbrPEkcjbcf5sto6yfvzd4UeOct8DjUbKfbk7R6_DhZfBYbAcdFD4WWFIQw6gALYx3Peoc89ZGYdrzIgjClBHCcR-0BEetDDyeZKJUVjMTAvfUluwMdeplDecIR6Rs_AQ9A2Mj16CKBK6VDZ54rpgTF-g-vXX1kb0squQu3S5EzKst5tVfmF_-x0Ou0EEKRm59vUad9WoDN2jffa4Xzeq2DecXEkykrA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Performance+Comparison+of+Shortest+Path+Algorithms+in+Directed+Graphs&rft.jtitle=Engineering+proceedings&rft.au=Fatima+Sapundzhi&rft.au=Kristiyan+Danev&rft.au=Antonina+Ivanova&rft.au=Metodi+Popstoilov&rft.date=2025-07-01&rft.pub=MDPI+AG&rft.eissn=2673-4591&rft.volume=100&rft.issue=1&rft.spage=31&rft_id=info:doi/10.3390%2Fengproc2025100031&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_76c9e889f87e4355829e7641ad81d36f