A Performance Comparison of Shortest Path Algorithms in Directed Graphs
This study examines the performance characteristics of four commonly used short-path algorithms, including Dijkstra, Bellman–Ford, Floyd–Warshall, and Dantzig, on randomly generated directed graphs. We analyze theoretical computational complexity and empirical execution time using a custom-built tes...
Uložené v:
| Vydané v: | Engineering proceedings Ročník 100; číslo 1; s. 31 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
MDPI AG
01.07.2025
|
| Predmet: | |
| ISSN: | 2673-4591 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This study examines the performance characteristics of four commonly used short-path algorithms, including Dijkstra, Bellman–Ford, Floyd–Warshall, and Dantzig, on randomly generated directed graphs. We analyze theoretical computational complexity and empirical execution time using a custom-built testing framework. The experimental results demonstrate significant performance differences across varying graph densities and sizes, with Dijkstra’s algorithm showing superior performance for sparse graphs while Floyd–Warshall and Dantzig provide more consistent performance for dense graphs. Time complexity analysis confirms the theoretical expectations: Dijkstra’s algorithm performs best on sparse graphs with O (E + V log V) complexity, Bellman–Ford shows O (V · E) complexity suitable for graphs with negative edges, while Floyd–Warshall and Dantzig both demonstrate O(V3) complexity that becomes efficient for dense graphs. This research provides practical insights for algorithm selection based on specific graph properties, guiding developers and researchers in choosing the most efficient algorithm for their particular graph structure requirements. |
|---|---|
| AbstractList | This study examines the performance characteristics of four commonly used short-path algorithms, including Dijkstra, Bellman–Ford, Floyd–Warshall, and Dantzig, on randomly generated directed graphs. We analyze theoretical computational complexity and empirical execution time using a custom-built testing framework. The experimental results demonstrate significant performance differences across varying graph densities and sizes, with Dijkstra’s algorithm showing superior performance for sparse graphs while Floyd–Warshall and Dantzig provide more consistent performance for dense graphs. Time complexity analysis confirms the theoretical expectations: Dijkstra’s algorithm performs best on sparse graphs with O (E + V log V) complexity, Bellman–Ford shows O (V · E) complexity suitable for graphs with negative edges, while Floyd–Warshall and Dantzig both demonstrate O(V3) complexity that becomes efficient for dense graphs. This research provides practical insights for algorithm selection based on specific graph properties, guiding developers and researchers in choosing the most efficient algorithm for their particular graph structure requirements. |
| Author | Slavi Georgiev Fatima Sapundzhi Metodi Popstoilov Kristiyan Danev Antonina Ivanova |
| Author_xml | – sequence: 1 fullname: Fatima Sapundzhi organization: Department of Communication and Computer Engineering, Faculty of Engineering, South-West University “Neofit Rilski”, 66 Ivan Myhailov Str., 2700 Blagoevgrad, Bulgaria – sequence: 2 fullname: Kristiyan Danev organization: Department of Computer Science, Faculty of Social, Business and Computer Sciences, Varna Free University “Chernorizets Hrabar”, 84 Yanko Slavchev Str., Chaika Resort, 9007 Varna, Bulgaria – sequence: 3 fullname: Antonina Ivanova organization: Department of Computer Science, Faculty of Social, Business and Computer Sciences, Varna Free University “Chernorizets Hrabar”, 84 Yanko Slavchev Str., Chaika Resort, 9007 Varna, Bulgaria – sequence: 4 fullname: Metodi Popstoilov organization: Department of Communication and Computer Engineering, Faculty of Engineering, South-West University “Neofit Rilski”, 66 Ivan Myhailov Str., 2700 Blagoevgrad, Bulgaria – sequence: 5 fullname: Slavi Georgiev organization: Department of Applied Mathematics and Statistics, Faculty of Natural Sciences and Education, University of Ruse, 8 Studentska Str., 7004 Ruse, Bulgaria |
| BookMark | eNotjNFKwzAYRoMoOOcewLu8QDXJn7TJ5Zg6BwMH6nVJkz9rxtqUpDe-vUO9OnDOx3dHrsc0IiEPnD0CGPaE43HKyQkmFGeMAb8iC1E3UEll-C1ZlXK66EsUEmBBtmt6wBxSHuzokG7SMNkcSxppCvSjT3nGMtODnXu6Ph9TjnM_FBpH-hwzuhk93WY79eWe3AR7Lrj655J8vb58bt6q_ft2t1nvK8815xW3IBQaZb1jwjnwXae1Zl4FxUFbpZz0wTToRNcEeVmCqnVnwIYgvehqWJLd369P9tROOQ42f7fJxvZXpHxsbZ6jO2Pb1M6g1iboBiUopYXBppbces091AF-ACz_XE8 |
| ContentType | Journal Article |
| DBID | DOA |
| DOI | 10.3390/engproc2025100031 |
| DatabaseName | DOAJ Directory of Open Access Journals |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2673-4591 |
| ExternalDocumentID | oai_doaj_org_article_76c9e889f87e4355829e7641ad81d36f |
| GroupedDBID | AADQD AFZYC ALMA_UNASSIGNED_HOLDINGS ARCSS GROUPED_DOAJ OK1 |
| ID | FETCH-LOGICAL-d1811-1a325e95adc02cc3dbb8880d5f5138a55c4df97ec2b7f45e93568b93aff4d2b63 |
| IEDL.DBID | DOA |
| IngestDate | Fri Oct 03 12:52:04 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-d1811-1a325e95adc02cc3dbb8880d5f5138a55c4df97ec2b7f45e93568b93aff4d2b63 |
| OpenAccessLink | https://doaj.org/article/76c9e889f87e4355829e7641ad81d36f |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_76c9e889f87e4355829e7641ad81d36f |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-01 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering proceedings |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| SSID | ssj0002512433 |
| Score | 2.2960043 |
| Snippet | This study examines the performance characteristics of four commonly used short-path algorithms, including Dijkstra, Bellman–Ford, Floyd–Warshall, and Dantzig,... |
| SourceID | doaj |
| SourceType | Open Website |
| StartPage | 31 |
| SubjectTerms | Bellman–Ford Dantzig Dijkstra Floyd–Warshall graph theory shortest path algorithms |
| Title | A Performance Comparison of Shortest Path Algorithms in Directed Graphs |
| URI | https://doaj.org/article/76c9e889f87e4355829e7641ad81d36f |
| Volume | 100 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals databaseCode: DOA dateStart: 20200101 customDbUrl: isFulltext: true eissn: 2673-4591 dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: false ssIdentifier: ssj0002512433 providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA1SPHgRRcVvcvC6tPnaJMdabD1IKajQ25KPSVvQrXRbf7_Jpmg9efGahA37hp15jx3eIHRXgokknrMCJIeCW8oLS8pkBGmkoDwICK2J65Mcj9V0qic7o75ST1i2B87AdWXpNCilg5LAkxc41SBLToyPTIuVIWXfntQ7Yirl4FS1OWP5NyaLur4L9SyVBJq2khAgv0z622oyPEKHWxqI-_n6Y7QH9Qka9fHkp48fD75HBOJlwM_z1BbbrPEkcjbcf5sto6yfvzd4UeOct8DjUbKfbk7R6_DhZfBYbAcdFD4WWFIQw6gALYx3Peoc89ZGYdrzIgjClBHCcR-0BEetDDyeZKJUVjMTAvfUluwMdeplDecIR6Rs_AQ9A2Mj16CKBK6VDZ54rpgTF-g-vXX1kb0squQu3S5EzKst5tVfmF_-x0Ou0EEKRm59vUad9WoDN2jffa4Xzeq2DecXEkykrA |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Performance+Comparison+of+Shortest+Path+Algorithms+in+Directed+Graphs&rft.jtitle=Engineering+proceedings&rft.au=Fatima+Sapundzhi&rft.au=Kristiyan+Danev&rft.au=Antonina+Ivanova&rft.au=Metodi+Popstoilov&rft.date=2025-07-01&rft.pub=MDPI+AG&rft.eissn=2673-4591&rft.volume=100&rft.issue=1&rft.spage=31&rft_id=info:doi/10.3390%2Fengproc2025100031&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_76c9e889f87e4355829e7641ad81d36f |