Hybrid Feature Selection and Classifying Stages through Electrocardiogram (ECG) Signal for Heart Disease Prediction

Diseases are major causes for increasing mortality rates. Clinical data analysis must predict cardiovascular disease. Machine learning (ML) may aid decision making and prediction using the healthcare field’s massive data set. ECG demonstrates electrical activities in human hearts, and variations in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering proceedings Ročník 59; číslo 1; s. 126
Hlavní autoři: Babu Kumar, Radhakrishnan Soundararajan, Kanimozhi Natesan, Roobini Maridhas Santhi
Médium: Journal Article
Jazyk:angličtina
Vydáno: MDPI AG 01.12.2023
Témata:
ISSN:2673-4591
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Diseases are major causes for increasing mortality rates. Clinical data analysis must predict cardiovascular disease. Machine learning (ML) may aid decision making and prediction using the healthcare field’s massive data set. ECG demonstrates electrical activities in human hearts, and variations in signals’ morphologies have provided improved knowledge of different types of arrhythmia depending on the state of the heart. In order to accurately forecast cardiac disorders, this study effort proposed a hybrid feature selection model and classification together with the ECG wave graph. QRS waves, which are time intervals of binary data, can be determined using the suggested technique of determining the ECG signal’s time interval from R-peak levels to the next level using double squared differences in signals. This approach involves many rounds of data sorting for decreasing noise, thresholding an ECG difference signal by examining the time interval between QRS, and then comparing relative magnitudes to identify the area of interval processing to evaluate accuracy results. In order to choose the best features, a modified chicken swarm optimization algorithm (MCSO) was proposed. Aberrant waves caused by cardiac ailments impacted the dataset patients, according to the suggested research’s unique machine learning methods of multi-module neural network system (MMNNS). The dataset was collected from the ML repository dataset vault at UCI as an individual ECG signal from the Heart Database. The findings demonstrate that each approach has a particular advantage in achieving the aims that have been set out.
AbstractList Diseases are major causes for increasing mortality rates. Clinical data analysis must predict cardiovascular disease. Machine learning (ML) may aid decision making and prediction using the healthcare field’s massive data set. ECG demonstrates electrical activities in human hearts, and variations in signals’ morphologies have provided improved knowledge of different types of arrhythmia depending on the state of the heart. In order to accurately forecast cardiac disorders, this study effort proposed a hybrid feature selection model and classification together with the ECG wave graph. QRS waves, which are time intervals of binary data, can be determined using the suggested technique of determining the ECG signal’s time interval from R-peak levels to the next level using double squared differences in signals. This approach involves many rounds of data sorting for decreasing noise, thresholding an ECG difference signal by examining the time interval between QRS, and then comparing relative magnitudes to identify the area of interval processing to evaluate accuracy results. In order to choose the best features, a modified chicken swarm optimization algorithm (MCSO) was proposed. Aberrant waves caused by cardiac ailments impacted the dataset patients, according to the suggested research’s unique machine learning methods of multi-module neural network system (MMNNS). The dataset was collected from the ML repository dataset vault at UCI as an individual ECG signal from the Heart Database. The findings demonstrate that each approach has a particular advantage in achieving the aims that have been set out.
Author Roobini Maridhas Santhi
Babu Kumar
Radhakrishnan Soundararajan
Kanimozhi Natesan
Author_xml – sequence: 1
  fullname: Babu Kumar
  organization: Department of Computational Intelligence, SRM Institute of Science & Technology, Kattankulathur 603203, India
– sequence: 2
  fullname: Radhakrishnan Soundararajan
  organization: Department of Mathematics, SRM TRP Engineering College, Trichy 621105, India
– sequence: 3
  fullname: Kanimozhi Natesan
  organization: Department of Computational Intelligence, SRM Institute of Science & Technology, Kattankulathur 603203, India
– sequence: 4
  fullname: Roobini Maridhas Santhi
  organization: Department of Computer Science & Engineering, Sathyabama Institute of Science & Technology, Chennai 600119, India
BookMark eNotjslOwzAYhC0EEqX0Abj5CIeA4yVxjih0kyqBVDhHXn6nrtK4stND3560cBrNaPTNPKDbPvSA0FNOXhmryBv07TEGQwllRFQ5LW7QhBYly_jo7tEspT0hhIqccsYmKK3OOnqLF6CGUwS8hQ7M4EOPVW9x3amUvDv7vsXbQbWQ8LCL4dTu8PzSG4dUtD60UR3w87xevuCtb3vVYRciXoGKA_7wCVQC_BXB-iv6Ed051SWY_esU_Szm3_Uq23wu1_X7JrN5WRWZ1MAN0YUuQDrLZQ6mKhxxkjorDRFcuarUJTeVs5RKBkyD1EYIZnIjTM6maP3HtUHtm2P0BxXPTVC-uQYhts140JsOGjCiVCPFaglcMJAVZUKXxhlJADRnvyw0bc0
ContentType Journal Article
DBID DOA
DOI 10.3390/engproc2023059126
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2673-4591
ExternalDocumentID oai_doaj_org_article_ec57ad22db8e453e89235b7cfc80eeb4
GroupedDBID AADQD
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARCSS
GROUPED_DOAJ
OK1
ID FETCH-LOGICAL-d1796-8be4c0b6b6e8fd481ec96f0f82fd8c054af97b74c9fd2283e3be8bc553c1c5c13
IEDL.DBID DOA
IngestDate Fri Oct 03 12:37:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d1796-8be4c0b6b6e8fd481ec96f0f82fd8c054af97b74c9fd2283e3be8bc553c1c5c13
OpenAccessLink https://doaj.org/article/ec57ad22db8e453e89235b7cfc80eeb4
ParticipantIDs doaj_primary_oai_doaj_org_article_ec57ad22db8e453e89235b7cfc80eeb4
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Engineering proceedings
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
SSID ssj0002512433
Score 2.2737784
Snippet Diseases are major causes for increasing mortality rates. Clinical data analysis must predict cardiovascular disease. Machine learning (ML) may aid decision...
SourceID doaj
SourceType Open Website
StartPage 126
SubjectTerms cuckoo search algorithm
ECG signal
heart disease
modified chicken swarm optimization algorithm
multi-module neural network system
Title Hybrid Feature Selection and Classifying Stages through Electrocardiogram (ECG) Signal for Heart Disease Prediction
URI https://doaj.org/article/ec57ad22db8e453e89235b7cfc80eeb4
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  databaseCode: DOA
  dateStart: 20200101
  customDbUrl:
  isFulltext: true
  eissn: 2673-4591
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0002512433
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQYmBBIEB8ywMDDFGT2EnsEUpLB1RVKqBuUWyfqy4B9QOJf8-dnaFMLGxWIp2lOyf3Tnd-j7FbXTaVbkye4HtIZKOyuMplgWslMhfInt9fqvFYzWZ6siX1RTNhkR44Oq4Htqgal-fOKJCFAIWIpDCV9ValACYwgaaV3iqm6B9MWVsKEduYAuv6HrRzSgmkFo6IIst_k_SHbDI8ZAcdDOQPcfsjtgPtMVuNvun-FCdYtlkCnwaNGnQcx3KfB_nKRbiWxBEizmHFO5EdPohaNjbMltK4Fb8b9J_v-XQxp10Ql_IRnug1f4rtGD5ZUn-GTJ-wt-HgtT9KOlGExOG3UybKgLSpKU0JyjupMrC69KlXuXfKIgBrvK5MJa32jqhtQBhQxhaFsJktbCZO2W770cIZ4w4hK9aoqUEr0jutEH7ZJnVp6bHEVu6cPZKH6s_Ie1ETE3V4gPGpu_jUf8Xn4j-MXLJ9ClwcI7liu-vlBq7Znv1aL1bLmxD6H8pkuN0
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Feature+Selection+and+Classifying+Stages+through+Electrocardiogram+%28ECG%29+Signal+for+Heart+Disease+Prediction&rft.jtitle=Engineering+proceedings&rft.au=Babu+Kumar&rft.au=Radhakrishnan+Soundararajan&rft.au=Kanimozhi+Natesan&rft.au=Roobini+Maridhas+Santhi&rft.date=2023-12-01&rft.pub=MDPI+AG&rft.eissn=2673-4591&rft.volume=59&rft.issue=1&rft.spage=126&rft_id=info:doi/10.3390%2Fengproc2023059126&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ec57ad22db8e453e89235b7cfc80eeb4