Solving a Global-Mixed Integer Signomial Geometric Fractional Programming Problem

This article addresses mixed integer fractional signomial geometric programming (MIFSGP) problems, which have been widely used in industrial design. In this paper, first, we convert fractional signomial programming into a nonfractional problem so that it maintains its geometric structure. Then, conv...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neutrosophic sets and systems Ročník 81; s. 655 - 666
Hlavní autoři: Nejad, J. Shirin, Saraj, M
Médium: Journal Article
Jazyk:angličtina
Vydáno: Neutrosophic Sets and Systems 01.07.2025
University of New Mexico
Témata:
ISSN:2331-6055, 2331-608X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This article addresses mixed integer fractional signomial geometric programming (MIFSGP) problems, which have been widely used in industrial design. In this paper, first, we convert fractional signomial programming into a nonfractional problem so that it maintains its geometric structure. Then, convex relaxation is used to reach a mixed integer global solution. Although, in many cases, we obtain a better objective function value with this process, designers may still be dissatisfied with the rupture between the original objective function value and the relaxed value. Therefore, we apply a spatial branch and bound algorithm to decrease that distance to an acceptable extent and maintain the global solution. Finally, a real design problem is considered to evaluate the efficiency and accuracy of the proposed technique. Keywords: geometric programming, fractional programming, mixed integer programming, non-convex functions, spatial branch and bound algorithm.
ISSN:2331-6055
2331-608X
DOI:10.5281/zenodo.14880138