Solving a Global-Mixed Integer Signomial Geometric Fractional Programming Problem

This article addresses mixed integer fractional signomial geometric programming (MIFSGP) problems, which have been widely used in industrial design. In this paper, first, we convert fractional signomial programming into a nonfractional problem so that it maintains its geometric structure. Then, conv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neutrosophic sets and systems Jg. 81; S. 655 - 666
Hauptverfasser: Nejad, J. Shirin, Saraj, M
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Neutrosophic Sets and Systems 01.07.2025
University of New Mexico
Schlagworte:
ISSN:2331-6055, 2331-608X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This article addresses mixed integer fractional signomial geometric programming (MIFSGP) problems, which have been widely used in industrial design. In this paper, first, we convert fractional signomial programming into a nonfractional problem so that it maintains its geometric structure. Then, convex relaxation is used to reach a mixed integer global solution. Although, in many cases, we obtain a better objective function value with this process, designers may still be dissatisfied with the rupture between the original objective function value and the relaxed value. Therefore, we apply a spatial branch and bound algorithm to decrease that distance to an acceptable extent and maintain the global solution. Finally, a real design problem is considered to evaluate the efficiency and accuracy of the proposed technique. Keywords: geometric programming, fractional programming, mixed integer programming, non-convex functions, spatial branch and bound algorithm.
AbstractList This article addresses mixed integer fractional signomial geometric programming (MIFSGP) problems, which have been widely used in industrial design. In this paper, first, we convert fractional signomial programming into a nonfractional problem so that it maintains its geometric structure. Then, convex relaxation is used to reach a mixed integer global solution. Although, in many cases, we obtain a better objective function value with this process, designers may still be dissatisfied with the rupture between the original objective function value and the relaxed value. Therefore, we apply a spatial branch and bound algorithm to decrease that distance to an acceptable extent and maintain the global solution. Finally, a real design problem is considered to evaluate the efficiency and accuracy of the proposed technique.
This article addresses mixed integer fractional signomial geometric programming (MIFSGP) problems, which have been widely used in industrial design. In this paper, first, we convert fractional signomial programming into a nonfractional problem so that it maintains its geometric structure. Then, convex relaxation is used to reach a mixed integer global solution. Although, in many cases, we obtain a better objective function value with this process, designers may still be dissatisfied with the rupture between the original objective function value and the relaxed value. Therefore, we apply a spatial branch and bound algorithm to decrease that distance to an acceptable extent and maintain the global solution. Finally, a real design problem is considered to evaluate the efficiency and accuracy of the proposed technique. Keywords: geometric programming, fractional programming, mixed integer programming, non-convex functions, spatial branch and bound algorithm.
Audience Academic
Author Nejad, J. Shirin
Saraj, M
Author_xml – sequence: 1
  fullname: Nejad, J. Shirin
– sequence: 2
  fullname: Saraj, M
BookMark eNo9kFFLwzAQx4NMcM49-9ov0JlrmjR9HMPNwURlCr6VS3otGW0jWRH10xudyD3cnx_H77i7ZJPBD8TYNfCFzDTcfNHga7-AXGsOQp-xaSYEpIrr18l_lvKCzY_HA-ccMiilgCl72vvu3Q1tgsmm8wa79N59UJ1sh5FaCsnetYPvHXbJhnxPY3A2WQe0o_NDhI_BtwH7_scQs-mov2LnDXZHmv_1GXtZ3z6v7tLdw2a7Wu7SGopiTAuRAxKZnOcWBfDaNsboEoyoOaAodYGkG1LWlKQyALBUKwSUqsBGZqWYse3JW3s8VG_B9Rg-K4-u-gU-tBWG0dmOKqVylLyMi8oix4JrIXU0oS3JkFUmuhYnV4tx3A2NH-ONsWrqnY2vblzkS53zQmQcQHwDOCpyRg
ContentType Journal Article
Copyright COPYRIGHT 2025 Neutrosophic Sets and Systems
Copyright_xml – notice: COPYRIGHT 2025 Neutrosophic Sets and Systems
DBID DOA
DOI 10.5281/zenodo.14880138
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Philosophy
EISSN 2331-608X
EndPage 666
ExternalDocumentID oai_doaj_org_article_664a5094ca974a7083581a5ac9ebec6b
A840732011
GroupedDBID 5VS
ABDBF
ACUHS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BAIFH
BBTPI
BCNDV
ESX
FAEIB
GROUPED_DOAJ
IAO
ITC
KQ8
OK1
PV9
RZL
ID FETCH-LOGICAL-d177t-7341aeeb404ca310dcfbb891b3d01a3987ae8fe6cb9e62111ced6a1a567af5293
IEDL.DBID DOA
ISSN 2331-6055
IngestDate Fri Oct 03 12:43:39 EDT 2025
Tue Nov 04 18:10:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d177t-7341aeeb404ca310dcfbb891b3d01a3987ae8fe6cb9e62111ced6a1a567af5293
OpenAccessLink https://doaj.org/article/664a5094ca974a7083581a5ac9ebec6b
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_664a5094ca974a7083581a5ac9ebec6b
gale_infotracacademiconefile_A840732011
PublicationCentury 2000
PublicationDate 20250701
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 20250701
  day: 01
PublicationDecade 2020
PublicationTitle Neutrosophic sets and systems
PublicationYear 2025
Publisher Neutrosophic Sets and Systems
University of New Mexico
Publisher_xml – name: Neutrosophic Sets and Systems
– name: University of New Mexico
SSID ssj0001219531
Score 2.295871
Snippet This article addresses mixed integer fractional signomial geometric programming (MIFSGP) problems, which have been widely used in industrial design. In this...
SourceID doaj
gale
SourceType Open Website
Aggregation Database
StartPage 655
SubjectTerms Algorithms
fractional programming
geometric programming
Industrial design
mixed integer programming
non-convex functions
spatial branch and bound algorithm
Title Solving a Global-Mixed Integer Signomial Geometric Fractional Programming Problem
URI https://doaj.org/article/664a5094ca974a7083581a5ac9ebec6b
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2331-608X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001219531
  issn: 2331-6055
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxdAF8RTlpQxITFbjPPwYCyKwUAUVpG6R49hVJZqiEBDw67mLg9SNhS3yYDtnx_edc_d9hFzqVEujQkeT1IQ0UbakysVYnMOdlMrAsxebENOpnM9VviH1hTlhnh7YG27MeaKR5M1oQL5aIGKQDEYwCofnJZ6-gHo2gil_u4K_h1inLBczCpg99bw-aSTZ-NvWEPPBIQGbl2FlSkfX3x_KG-4l2yU7PS4MJn4-e2TL1vtkmP8KDXwdkMfZ-gWj_0AHnqifPiw_bRXgnd7CNsFsucASY-jkzq5XKJRlgqzxdQvQmPtErBX2kHsVmUPynN0-3dzTXhCBVkyIlgpwOdraMgnBHIDLKuPKUipWxlXIdKyk0FY6y02pLIfIjhlbcQ3W4kK7FBz7ERnU69oek8BojoREBvyXSpwVOol0FQnpUiMjiKFG5BptUrx6zosCWai7Blibol-b4q-1GZErtGiB30oLL6z7lH-YArJOFROILkWMEOTkP4Y7JcMI1Xm7ZNozMmibd3tOts1Hu3xrLroN8gP0CL_W
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+a+Global-Mixed+Integer+Signomial+Geometric+Fractional+Programming+Problem&rft.jtitle=Neutrosophic+sets+and+systems&rft.au=Nejad%2C+J.+Shirin&rft.au=Saraj%2C+M&rft.date=2025-07-01&rft.pub=Neutrosophic+Sets+and+Systems&rft.issn=2331-6055&rft.volume=81&rft.spage=655&rft_id=info:doi/10.5281%2Fzenodo.14880138&rft.externalDocID=A840732011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2331-6055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2331-6055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2331-6055&client=summon