On nonsmooth multiobjective fractional programming problems involving (p, r)− ρ −(η ,θ)- invex functions
A class of multiobjective fractional programming problems (MFP) is considered where the involved functions are locally Lipschitz. In order to deduce our main results, we introduce the definition of (p,r)−ρ −(η,θ)-invex class about the Clarke generalized gradient. Under the above invexity assumption,...
Uložené v:
| Vydané v: | Yugoslav Journal of Operations Research Ročník 23; číslo 3; s. 367 - 386 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
University of Belgrade
01.01.2013
|
| Predmet: | |
| ISSN: | 0354-0243, 1820-743X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | A class of multiobjective fractional programming problems (MFP) is considered where the involved functions are locally Lipschitz. In order to deduce our main results, we introduce the definition of (p,r)−ρ −(η,θ)-invex class about the Clarke generalized gradient. Under the above invexity assumption, sufficient conditions for optimality are given. Finally, three types of dual problems corresponding to (MFP) are formulated, and appropriate dual theorems are proved. |
|---|---|
| ISSN: | 0354-0243 1820-743X |
| DOI: | 10.2298/YJOR130131012J |