On nonsmooth multiobjective fractional programming problems involving (p, r)− ρ −(η ,θ)- invex functions
A class of multiobjective fractional programming problems (MFP) is considered where the involved functions are locally Lipschitz. In order to deduce our main results, we introduce the definition of (p,r)−ρ −(η,θ)-invex class about the Clarke generalized gradient. Under the above invexity assumption,...
Uloženo v:
| Vydáno v: | Yugoslav Journal of Operations Research Ročník 23; číslo 3; s. 367 - 386 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
University of Belgrade
01.01.2013
|
| Témata: | |
| ISSN: | 0354-0243, 1820-743X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A class of multiobjective fractional programming problems (MFP) is considered where the involved functions are locally Lipschitz. In order to deduce our main results, we introduce the definition of (p,r)−ρ −(η,θ)-invex class about the Clarke generalized gradient. Under the above invexity assumption, sufficient conditions for optimality are given. Finally, three types of dual problems corresponding to (MFP) are formulated, and appropriate dual theorems are proved. |
|---|---|
| ISSN: | 0354-0243 1820-743X |
| DOI: | 10.2298/YJOR130131012J |