On nonsmooth multiobjective fractional programming problems involving (p, r)− ρ −(η ,θ)- invex functions

A class of multiobjective fractional programming problems (MFP) is considered where the involved functions are locally Lipschitz. In order to deduce our main results, we introduce the definition of (p,r)−ρ −(η,θ)-invex class about the Clarke generalized gradient. Under the above invexity assumption,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Yugoslav Journal of Operations Research Ročník 23; číslo 3; s. 367 - 386
Hlavní autori: Jayswal Anurag, Prasad Ashish Kumar, Stancu-Minasian I.M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: University of Belgrade 01.01.2013
Predmet:
ISSN:0354-0243, 1820-743X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A class of multiobjective fractional programming problems (MFP) is considered where the involved functions are locally Lipschitz. In order to deduce our main results, we introduce the definition of (p,r)−ρ −(η,θ)-invex class about the Clarke generalized gradient. Under the above invexity assumption, sufficient conditions for optimality are given. Finally, three types of dual problems corresponding to (MFP) are formulated, and appropriate dual theorems are proved.
AbstractList A class of multiobjective fractional programming problems (MFP) is considered where the involved functions are locally Lipschitz. In order to deduce our main results, we introduce the definition of (p,r)−ρ −(η,θ)-invex class about the Clarke generalized gradient. Under the above invexity assumption, sufficient conditions for optimality are given. Finally, three types of dual problems corresponding to (MFP) are formulated, and appropriate dual theorems are proved.
Author Stancu-Minasian I.M.
Prasad Ashish Kumar
Jayswal Anurag
Author_xml – sequence: 1
  fullname: Jayswal Anurag
– sequence: 2
  fullname: Prasad Ashish Kumar
– sequence: 3
  fullname: Stancu-Minasian I.M.
BookMark eNotkMtKw0AYhQdRsNZuXc-yhUbnkrlkKcVLS6EgCroKc0udkmTKpC26dOfal9GnqO_gk5hWV-dw_p8PzjkBh3WoHQBnGJ0TksmLp8nsDlOEKUaYTA5AB0uCEpHSx0PQQZSlCSIpPQa9pvEaYUGlJEx2QJjVsEU1VQirZ1ity5UPeuHMym8cLKJqTahVCZcxzKOqKl_Pd16Xrmqgrzeh3Oyi_nII4-Dn_QN-v8FW-ttPONx-DZLdj3uBxbrek5pTcFSosnG9f-2Ch-ur-9FtMp3djEeX08RiwRcJ1oJjQzLspFGoKLi2glkiTWoZK4TBvJBtDSeVQUaoDBGZ6QKL9sol5ZZ2wfiPa4Na5MvoKxVf86B8vg9CnOcqrrwpXU6F0xIjzixuJxJGG8SYdZRrwzFnGf0FaZxvXw
ContentType Journal Article
DBID DOA
DOI 10.2298/YJOR130131012J
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 1820-743X
EndPage 386
ExternalDocumentID oai_doaj_org_article_37eb81065d12437cbc055de36bc61659
GroupedDBID GROUPED_DOAJ
ID FETCH-LOGICAL-d176j-1b761c291e8ca0ff6bd75d28c4d55f7c16f8b01e8ac0c7a90289bf17d556836d3
IEDL.DBID DOA
ISSN 0354-0243
IngestDate Fri Oct 03 12:52:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d176j-1b761c291e8ca0ff6bd75d28c4d55f7c16f8b01e8ac0c7a90289bf17d556836d3
OpenAccessLink https://doaj.org/article/37eb81065d12437cbc055de36bc61659
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_37eb81065d12437cbc055de36bc61659
PublicationCentury 2000
PublicationDate 2013-01-01
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Yugoslav Journal of Operations Research
PublicationYear 2013
Publisher University of Belgrade
Publisher_xml – name: University of Belgrade
SSID ssib017388258
ssib048656891
ssib044765231
Score 1.8917359
Snippet A class of multiobjective fractional programming problems (MFP) is considered where the involved functions are locally Lipschitz. In order to deduce our main...
SourceID doaj
SourceType Open Website
StartPage 367
SubjectTerms (p,r)−ρ−(η,θ)-invexity
Clarke gradient
duality theorems
efficiency
multiobjective fractional programming
sufficient optimality conditions
Title On nonsmooth multiobjective fractional programming problems involving (p, r)− ρ −(η ,θ)- invex functions
URI https://doaj.org/article/37eb81065d12437cbc055de36bc61659
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1820-743X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044765231
  issn: 0354-0243
  databaseCode: M~E
  dateStart: 0
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSsQwEA6yePAiior_5OBBwWDTNj89quwiC-6KKOhpSTIJrOCu7Kp4Erx59mX0KdZ38EmctAXXkxcvLZS0NDPD_CST7yNkJ_GgbGILxpVXLAeTMuO4YAlgdmqhgMKGkmxCdTr66qo4m6L6ij1hFTxwJbiDTHmrsW4RwCN2nrMuEQJ8Jq2TXIry6F6iiqliCi2Jqwwzx5_9vjxXUkztd-Ua05iaTi8TOYuwfBWiY5oW-uC63T1H386zCH7V_oXmX4ad1gKZr_NFelj95yKZ8YMlMuwOKJbt49shypmWPYFDe1O5LhpG1VkFfKtuvrrF8ERr5pgx7Q_QI8VlBLp7t09He1-vb_TzheJtd_JO9ycfeyyO8U80xrzSLJfJZat5cXzCauYEBlzJG8atktylBffamSQEaUEJSLXLQYigHJdBo5S8Ni5xykQEF9QJVxDxyDIJ2Qpp4DT8KqEmZFYbgZqTgMFfm-BtAKfBOPDg_Ro5itLp3VXgGL0IV10-QCX2aiX2_lLi-n98ZIPMpSVXRVwf2SSN-9GD3yKz7vG-Px5tl_aB19Pn5jcD7cJ6
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+nonsmooth+multiobjective+fractional+programming+problems+involving+%28p%2C+r%29%E2%88%92+%CF%81+%E2%88%92%28%CE%B7+%2C%CE%B8%29-+invex+functions&rft.jtitle=Yugoslav+Journal+of+Operations+Research&rft.au=Jayswal+Anurag&rft.au=Prasad+Ashish+Kumar&rft.au=Stancu-Minasian+I.M.&rft.date=2013-01-01&rft.pub=University+of+Belgrade&rft.issn=0354-0243&rft.eissn=1820-743X&rft.volume=23&rft.issue=3&rft.spage=367&rft.epage=386&rft_id=info:doi/10.2298%2FYJOR130131012J&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_37eb81065d12437cbc055de36bc61659
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0354-0243&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0354-0243&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0354-0243&client=summon