An Artificial Olfactory System for Toxic Compounds Classification using Machine Learning Techniques

The long-term exposure to nitrogen dioxide produces harmful effects for humans and any living being. Thus, in security applications, sensor arrays are required for detecting nitrogen dioxide by interfering gas classification. In this work, a compact and intelligent electronic nose (e-nose) based on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical Engineering Transactions Jg. 95
Hauptverfasser: Cruz, Carlos, Aleixandre, Manuel, Matatagui, Daniel, Horrillo, M.C.
Format: Journal Article
Sprache:Englisch
Japanisch
Veröffentlicht: Italian Association of Chemical Engineering 01.10.2022
AIDIC Servizi S.r.l
Schlagworte:
ISSN:2283-9216, 2283-9216
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The long-term exposure to nitrogen dioxide produces harmful effects for humans and any living being. Thus, in security applications, sensor arrays are required for detecting nitrogen dioxide by interfering gas classification. In this work, a compact and intelligent electronic nose (e-nose) based on a Shear-Horizontal Surface Acoustic Wave (SH-SAW) sensor array is proposed for sensing, classifying, and calibrating toxic chemicals. Different carbon-based nanostructured materials are deposited as sensitive layers providing excellent outcomes by mass and elastic changes in this type of sensors. The HS-SAW sensors achieve a high sensitivity, fast response, and reproducibility to different toxic gases such as nitrogen dioxide, carbon monoxide, ammonia, benzene and acetone. The gas flows were controlled by an automated system that consists of four mass flow controllers to obtain the desired concentrations. The e-nose provides an efficient performance with supervised machine learning techniques. Outcomes indicate that Linear Discrimination Analysis (LDA) performs a 90% precise discrimination on test dataset and provides a clear discrimination of NO2 with interfering toxic compounds. On the other hand, K-Nearest Neighbors (KNN) and Logistic Regression (LR) also achieve excellent classification scores (95% and 79% respectively). Decision surface for toxic compounds of different classification algorithms were also performed achieving good classification. An evaluation and comparison of the prediction methods: Partial Least Square (PLS), Artificial Neural Networks (ANNs) and cascade of ANNs are accomplished. The ANN cascade results show that this technique is an excellent candidate for an accurate prediction and classification of NO2. Therefore, the designed and validated e-nose is a promising on-line tool of analysis for environmental applications.
AbstractList The long-term exposure to nitrogen dioxide produces harmful effects for humans and any living being. Thus, in security applications, sensor arrays are required for detecting nitrogen dioxide by interfering gas classification. In this work, a compact and intelligent electronic nose (e-nose) based on a Shear-Horizontal Surface Acoustic Wave (SH-SAW) sensor array is proposed for sensing, classifying, and calibrating toxic chemicals. Different carbon-based nanostructured materials are deposited as sensitive layers providing excellent outcomes by mass and elastic changes in this type of sensors. The HS-SAW sensors achieve a high sensitivity, fast response, and reproducibility to different toxic gases such as nitrogen dioxide, carbon monoxide, ammonia, benzene and acetone. The gas flows were controlled by an automated system that consists of four mass flow controllers to obtain the desired concentrations. The e-nose provides an efficient performance with supervised machine learning techniques. Outcomes indicate that Linear Discrimination Analysis (LDA) performs a 90% precise discrimination on test dataset and provides a clear discrimination of NO2 with interfering toxic compounds. On the other hand, K-Nearest Neighbors (KNN) and Logistic Regression (LR) also achieve excellent classification scores (95% and 79% respectively). Decision surface for toxic compounds of different classification algorithms were also performed achieving good classification. An evaluation and comparison of the prediction methods: Partial Least Square (PLS), Artificial Neural Networks (ANNs) and cascade of ANNs are accomplished. The ANN cascade results show that this technique is an excellent candidate for an accurate prediction and classification of NO2. Therefore, the designed and validated e-nose is a promising on-line tool of analysis for environmental applications.
Author Aleixandre, Manuel
Cruz, Carlos
Horrillo, M.C.
Matatagui, Daniel
Author_xml – sequence: 1
  fullname: Cruz, Carlos
– sequence: 2
  fullname: Aleixandre, Manuel
– sequence: 3
  fullname: Matatagui, Daniel
– sequence: 4
  orcidid: 0000-0003-2554-3119
  fullname: Horrillo, M.C.
BackLink https://cir.nii.ac.jp/crid/1871146592890242816$$DView record in CiNii
BookMark eNpNkE1PwkAQhjcGExG5-Av24BXtfnS7PZIGlQTDQTw30-ksrCm72JZE_r1FPHiZmTzJ-yTz3rJRiIEYuxfJo1KJeioWGynzNBHqio2ltGqWS2FG_-4bNu06XyU6VcIoY8YM54HP2947jx4avm4cYB_bE38_dT3tuYst38Rvj7yI-0M8hrrjRQODZUhA72Pgx86HLX8D3PlAfEXQhjPYEO6C_zpSd8euHTQdTf_2hH08LzbF62y1flkW89WsFibtZ9pZEJkwpDXWWSoFoiaqjdW1cYnEChwISjSgqmpN2kpNhowhKzJSEtWELS_eOsJneWj9HtpTGcGXvyC22xKGV7GhUjjUlUIBQldaqdy6Cp2yGVnIUqPzwfVwcQXvS_TnKWwmhDZpLm2eSC3tUOEPMeFxfw
ContentType Journal Article
Contributor Consejo Superior de Investigaciones Científicas [https://ror.org/02gfc7t72]
Ministerio de Ciencia e Innovación (España)
Agencia Estatal de Investigación (España)
Contributor_xml – sequence: 1
  fullname: Ministerio de Ciencia e Innovación (España)
– sequence: 2
  fullname: Agencia Estatal de Investigación (España)
– sequence: 3
  fullname: Consejo Superior de Investigaciones Científicas [https://ror.org/02gfc7t72]
DBID RYH
DOA
DOI 10.3303/CET2295013
DatabaseName CiNii Complete
DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2283-9216
ExternalDocumentID oai_doaj_org_article_1fc4b3c1a14b43398fbcf387e8a75649
GroupedDBID ACCJX
ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
OK1
RYH
ID FETCH-LOGICAL-d165t-4f8a1716e44cd7521cc4eed684d6f02cbafa1e04ac3bd4e4824e6e66e817e32c3
IEDL.DBID DOA
ISSN 2283-9216
IngestDate Fri Oct 03 12:50:27 EDT 2025
Thu Jun 26 23:02:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d165t-4f8a1716e44cd7521cc4eed684d6f02cbafa1e04ac3bd4e4824e6e66e817e32c3
ORCID 0000-0003-2554-3119
OpenAccessLink https://doaj.org/article/1fc4b3c1a14b43398fbcf387e8a75649
ParticipantIDs doaj_primary_oai_doaj_org_article_1fc4b3c1a14b43398fbcf387e8a75649
nii_cinii_1871146592890242816
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Chemical Engineering Transactions
PublicationYear 2022
Publisher Italian Association of Chemical Engineering
AIDIC Servizi S.r.l
Publisher_xml – name: Italian Association of Chemical Engineering
– name: AIDIC Servizi S.r.l
SSID ssib045316366
ssj0002181846
ssib045316428
ssib045324216
ssib045316404
ssib044732864
ssib045324869
Score 2.2497602
Snippet The long-term exposure to nitrogen dioxide produces harmful effects for humans and any living being. Thus, in security applications, sensor arrays are required...
SourceID doaj
nii
SourceType Open Website
Publisher
SubjectTerms Chemical engineering
Computer engineering. Computer hardware
TK7885-7895
TP155-156
Title An Artificial Olfactory System for Toxic Compounds Classification using Machine Learning Techniques
URI https://cir.nii.ac.jp/crid/1871146592890242816
https://doaj.org/article/1fc4b3c1a14b43398fbcf387e8a75649
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2283-9216
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002181846
  issn: 2283-9216
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2283-9216
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044732864
  issn: 2283-9216
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA0iHryIomLVSg5el242n3uspcWDVg8r9LbkYyILspW2iv5781GhNy9e9hBYAm-SvBkyeQ-hW-F1YAXmCulkWTAoXWGUVYXS3HEvKXM6SeY_yPlcLRb1847VV-wJy_LAGbgR8ZYZaokmzDBKa-WN9VRJUFpywdLTvZD17BRT8QyOxBWYNeuRhpKdjibTJjpXl9HHIKnzBzLpu26HTGbH6GibBeJxnv0E7UF_iuy4TyNZ0wE_vWUvnG-cVcVxSC9xs_zqLI6bONohrXHytIx_JIBxagDAj6lBEvBWO_UVN79Cresz9DKbNpP7YuuBUDgi-KZgXumoaAOMWScD11rLAq0JxZzwZWWNDmBDybSlxjFgqmIgQAhQRAKtLD1H-_2yhwuEKXGee1GreJsJwtScciEJEANh03o6QHcRl_Y9y1y0UXg6DYRwtNtwtH-FY4CGAdXWdvFLQjUWTmJep9vMUOgQcfkfk1yhwyq-Qkg9dddof7P6gCE6sJ-bbr26SSvhBwwHuBs
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Artificial+Olfactory+System+for+Toxic+Compounds+Classification+Using+Machine+Learning+Techniques&rft.jtitle=Chemical+engineering+transactions&rft.au=Carlos+Cruz&rft.au=Manuel+Aleixandre&rft.au=Daniel+Matatagui&rft.au=Mari+Carmen+Horrillo&rft.date=2022-10-01&rft.pub=AIDIC+Servizi+S.r.l&rft.eissn=2283-9216&rft.volume=95&rft_id=info:doi/10.3303%2FCET2295013&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1fc4b3c1a14b43398fbcf387e8a75649
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2283-9216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2283-9216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2283-9216&client=summon