An Artificial Olfactory System for Toxic Compounds Classification using Machine Learning Techniques
The long-term exposure to nitrogen dioxide produces harmful effects for humans and any living being. Thus, in security applications, sensor arrays are required for detecting nitrogen dioxide by interfering gas classification. In this work, a compact and intelligent electronic nose (e-nose) based on...
Gespeichert in:
| Veröffentlicht in: | Chemical Engineering Transactions Jg. 95 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch Japanisch |
| Veröffentlicht: |
Italian Association of Chemical Engineering
01.10.2022
AIDIC Servizi S.r.l |
| Schlagworte: | |
| ISSN: | 2283-9216, 2283-9216 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The long-term exposure to nitrogen dioxide produces harmful effects for humans and any living being. Thus, in security applications, sensor arrays are required for detecting nitrogen dioxide by interfering gas classification. In this work, a compact and intelligent electronic nose (e-nose) based on a Shear-Horizontal Surface Acoustic Wave (SH-SAW) sensor array is proposed for sensing, classifying, and calibrating toxic chemicals. Different carbon-based nanostructured materials are deposited as sensitive layers providing excellent outcomes by mass and elastic changes in this type of sensors. The HS-SAW sensors achieve a high sensitivity, fast response, and reproducibility to different toxic gases such as nitrogen dioxide, carbon monoxide, ammonia, benzene and acetone. The gas flows were controlled by an automated system that consists of four mass flow controllers to obtain the desired concentrations. The e-nose provides an efficient performance with supervised machine learning techniques. Outcomes indicate that Linear Discrimination Analysis (LDA) performs a 90% precise discrimination on test dataset and provides a clear discrimination of NO2 with interfering toxic compounds. On the other hand, K-Nearest Neighbors (KNN) and Logistic Regression (LR) also achieve excellent classification scores (95% and 79% respectively). Decision surface for toxic compounds of different classification algorithms were also performed achieving good classification. An evaluation and comparison of the prediction methods: Partial Least Square (PLS), Artificial Neural Networks (ANNs) and cascade of ANNs are accomplished. The ANN cascade results show that this technique is an excellent candidate for an accurate prediction and classification of NO2. Therefore, the designed and validated e-nose is a promising on-line tool of analysis for environmental applications. |
|---|---|
| AbstractList | The long-term exposure to nitrogen dioxide produces harmful effects for humans and any living being. Thus, in security applications, sensor arrays are required for detecting nitrogen dioxide by interfering gas classification. In this work, a compact and intelligent electronic nose (e-nose) based on a Shear-Horizontal Surface Acoustic Wave (SH-SAW) sensor array is proposed for sensing, classifying, and calibrating toxic chemicals. Different carbon-based nanostructured materials are deposited as sensitive layers providing excellent outcomes by mass and elastic changes in this type of sensors. The HS-SAW sensors achieve a high sensitivity, fast response, and reproducibility to different toxic gases such as nitrogen dioxide, carbon monoxide, ammonia, benzene and acetone. The gas flows were controlled by an automated system that consists of four mass flow controllers to obtain the desired concentrations. The e-nose provides an efficient performance with supervised machine learning techniques. Outcomes indicate that Linear Discrimination Analysis (LDA) performs a 90% precise discrimination on test dataset and provides a clear discrimination of NO2 with interfering toxic compounds. On the other hand, K-Nearest Neighbors (KNN) and Logistic Regression (LR) also achieve excellent classification scores (95% and 79% respectively). Decision surface for toxic compounds of different classification algorithms were also performed achieving good classification. An evaluation and comparison of the prediction methods: Partial Least Square (PLS), Artificial Neural Networks (ANNs) and cascade of ANNs are accomplished. The ANN cascade results show that this technique is an excellent candidate for an accurate prediction and classification of NO2. Therefore, the designed and validated e-nose is a promising on-line tool of analysis for environmental applications. |
| Author | Aleixandre, Manuel Cruz, Carlos Horrillo, M.C. Matatagui, Daniel |
| Author_xml | – sequence: 1 fullname: Cruz, Carlos – sequence: 2 fullname: Aleixandre, Manuel – sequence: 3 fullname: Matatagui, Daniel – sequence: 4 orcidid: 0000-0003-2554-3119 fullname: Horrillo, M.C. |
| BackLink | https://cir.nii.ac.jp/crid/1871146592890242816$$DView record in CiNii |
| BookMark | eNpNkE1PwkAQhjcGExG5-Av24BXtfnS7PZIGlQTDQTw30-ksrCm72JZE_r1FPHiZmTzJ-yTz3rJRiIEYuxfJo1KJeioWGynzNBHqio2ltGqWS2FG_-4bNu06XyU6VcIoY8YM54HP2947jx4avm4cYB_bE38_dT3tuYst38Rvj7yI-0M8hrrjRQODZUhA72Pgx86HLX8D3PlAfEXQhjPYEO6C_zpSd8euHTQdTf_2hH08LzbF62y1flkW89WsFibtZ9pZEJkwpDXWWSoFoiaqjdW1cYnEChwISjSgqmpN2kpNhowhKzJSEtWELS_eOsJneWj9HtpTGcGXvyC22xKGV7GhUjjUlUIBQldaqdy6Cp2yGVnIUqPzwfVwcQXvS_TnKWwmhDZpLm2eSC3tUOEPMeFxfw |
| ContentType | Journal Article |
| Contributor | Consejo Superior de Investigaciones Científicas [https://ror.org/02gfc7t72] Ministerio de Ciencia e Innovación (España) Agencia Estatal de Investigación (España) |
| Contributor_xml | – sequence: 1 fullname: Ministerio de Ciencia e Innovación (España) – sequence: 2 fullname: Agencia Estatal de Investigación (España) – sequence: 3 fullname: Consejo Superior de Investigaciones Científicas [https://ror.org/02gfc7t72] |
| DBID | RYH DOA |
| DOI | 10.3303/CET2295013 |
| DatabaseName | CiNii Complete DOAJ Directory of Open Access Journals |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2283-9216 |
| ExternalDocumentID | oai_doaj_org_article_1fc4b3c1a14b43398fbcf387e8a75649 |
| GroupedDBID | ACCJX ALMA_UNASSIGNED_HOLDINGS GROUPED_DOAJ OK1 RYH |
| ID | FETCH-LOGICAL-d165t-4f8a1716e44cd7521cc4eed684d6f02cbafa1e04ac3bd4e4824e6e66e817e32c3 |
| IEDL.DBID | DOA |
| ISSN | 2283-9216 |
| IngestDate | Fri Oct 03 12:50:27 EDT 2025 Thu Jun 26 23:02:19 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English Japanese |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-d165t-4f8a1716e44cd7521cc4eed684d6f02cbafa1e04ac3bd4e4824e6e66e817e32c3 |
| ORCID | 0000-0003-2554-3119 |
| OpenAccessLink | https://doaj.org/article/1fc4b3c1a14b43398fbcf387e8a75649 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1fc4b3c1a14b43398fbcf387e8a75649 nii_cinii_1871146592890242816 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-01 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Chemical Engineering Transactions |
| PublicationYear | 2022 |
| Publisher | Italian Association of Chemical Engineering AIDIC Servizi S.r.l |
| Publisher_xml | – name: Italian Association of Chemical Engineering – name: AIDIC Servizi S.r.l |
| SSID | ssib045316366 ssj0002181846 ssib045316428 ssib045324216 ssib045316404 ssib044732864 ssib045324869 |
| Score | 2.2497602 |
| Snippet | The long-term exposure to nitrogen dioxide produces harmful effects for humans and any living being. Thus, in security applications, sensor arrays are required... |
| SourceID | doaj nii |
| SourceType | Open Website Publisher |
| SubjectTerms | Chemical engineering Computer engineering. Computer hardware TK7885-7895 TP155-156 |
| Title | An Artificial Olfactory System for Toxic Compounds Classification using Machine Learning Techniques |
| URI | https://cir.nii.ac.jp/crid/1871146592890242816 https://doaj.org/article/1fc4b3c1a14b43398fbcf387e8a75649 |
| Volume | 95 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2283-9216 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002181846 issn: 2283-9216 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2283-9216 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044732864 issn: 2283-9216 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA0iHryIomLVSg5el242n3uspcWDVg8r9LbkYyILspW2iv5781GhNy9e9hBYAm-SvBkyeQ-hW-F1YAXmCulkWTAoXWGUVYXS3HEvKXM6SeY_yPlcLRb1847VV-wJy_LAGbgR8ZYZaokmzDBKa-WN9VRJUFpywdLTvZD17BRT8QyOxBWYNeuRhpKdjibTJjpXl9HHIKnzBzLpu26HTGbH6GibBeJxnv0E7UF_iuy4TyNZ0wE_vWUvnG-cVcVxSC9xs_zqLI6bONohrXHytIx_JIBxagDAj6lBEvBWO_UVN79Cresz9DKbNpP7YuuBUDgi-KZgXumoaAOMWScD11rLAq0JxZzwZWWNDmBDybSlxjFgqmIgQAhQRAKtLD1H-_2yhwuEKXGee1GreJsJwtScciEJEANh03o6QHcRl_Y9y1y0UXg6DYRwtNtwtH-FY4CGAdXWdvFLQjUWTmJep9vMUOgQcfkfk1yhwyq-Qkg9dddof7P6gCE6sJ-bbr26SSvhBwwHuBs |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Artificial+Olfactory+System+for+Toxic+Compounds+Classification+Using+Machine+Learning+Techniques&rft.jtitle=Chemical+engineering+transactions&rft.au=Carlos+Cruz&rft.au=Manuel+Aleixandre&rft.au=Daniel+Matatagui&rft.au=Mari+Carmen+Horrillo&rft.date=2022-10-01&rft.pub=AIDIC+Servizi+S.r.l&rft.eissn=2283-9216&rft.volume=95&rft_id=info:doi/10.3303%2FCET2295013&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1fc4b3c1a14b43398fbcf387e8a75649 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2283-9216&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2283-9216&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2283-9216&client=summon |