Treatise on Process Metallurgy, Volume 2

Process metallurgy provides academics with the fundamentals of the manufacturing of metallic materials, from raw materials into finished parts or products.Coverage is divided into three volumes, entitled Process Fundamentals, encompassing process fundamentals, extractive and refining processes, and...

Celý popis

Uložené v:
Podrobná bibliografia
Hlavný autor: Seetharaman, Seshadri
Médium: E-kniha
Jazyk:English
Vydavateľské údaje: Chantilly Elsevier 2013
Vydanie:1
Predmet:
ISBN:0080969844, 9780080969848
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Obsah:
  • 1.9.4. Separation of Metallic Droplets from Slags -- 1.9.5. Engulfing Nonmetallic Inclusions and Gas Bubbles into Solidified Interface -- 1.9.6. Gas Bubble Formation in Liquid Steel -- 1.9.7. Nucleation During Solidification -- 1.9.8. Slag Foaming -- References -- Chapter 2: Metallurgical Process Phenomena -- Chapter 2.1: The Importance of Metallurgical Process Phenomena -- Chapter 2.2: Kinetics of Gas-Liquid and Liquid-Liquid Reactions -- 2.2.1. Introduction -- 2.2.2. Rate-Controlling Process -- 2.2.3. The Difference Between Thermodynamics and Kinetics -- 2.2.4. Gas-Phase Mass Transfer -- 2.2.4.1. Flux Equations -- 2.2.4.2. Properties of Gases and Mass Transfer Coefficient Relationships -- 2.2.4.3. Mass Transfer Correlation Relationships -- 2.2.4.4. Characteristics of GPMT-Controlled Reactions -- 2.2.4.5. Examples of GPMT -- 2.2.4.6. Coupled Mass Transfer -- 2.2.4.7. Reactions with Bulk Flow -- 2.2.5. Free Vaporization -- 2.2.6. Liquid-Phase Mass Transfer -- 2.2.6.1. Flux Equations and Correlations -- 2.2.6.2. An Example of LPMT Control -- 2.2.6.3. Two-Phase LPMT -- 2.2.7. Heat Transfer Control -- 2.2.8. Chemical Kinetics -- 2.2.8.1. Absorption of Surfaces -- 2.2.8.2. Rate Equations and Activated Complexes -- 2.2.8.3. Relationship Between Forward and Reverse Reaction -- 2.2.8.4. Examples of Gas-Metal Reactions -- 2.2.8.4.1. N2 Reaction with Liquid Iron -- 2.2.8.5. The CO2 Reaction on Iron-Carbon Alloys -- 2.2.8.5.1. The CO2 Reaction with Liquid Fe-C -- 2.2.8.5.2. The H2O Reaction with Liquid Iron-Carbon Alloys -- 2.2.8.5.3. The CO, H2, C2H6, and CH4 Reaction with Liquid Iron -- 2.2.8.5.4. Parallel Reaction and Mixed Control -- 2.2.9. Mixed Control -- 2.2.9.1. Chemical Kinetics-GPMT -- 2.2.9.2. Chemical Kinetics-LPMT -- 2.2.9.3. Gaseous Intermediates -- 2.2.10. Concluding Remarks -- References -- Chapter 2.3: Bubbles in Process Metallurgy
  • 2.3.1. Introduction -- 2.3.2. Bubble Formation -- 2.3.2.1. Quasi-Stationary Bubbling -- 2.3.2.2. Effect of Drag on Bubble Detachment Size -- 2.3.2.3. Bubble Breakup -- 2.3.2.4. Effect of Flow Conditions on Bubble Breakup and Coalescence -- 2.3.3. Bubble Shapes -- 2.3.4. Plume Shape -- 2.3.5. Mixing Time -- 2.3.6. Bubble Rupture -- 2.3.7. Bubbling-Jetting Transition -- 2.3.7.1. Effects of Temperature and Entrained Liquid on the Sonic Velocity -- 2.3.7.2. Jet Breakup -- 2.3.8. Modeling -- References -- Chapter 2.4: Foams and Foaming -- 2.4.1. Foaming in Metallurgical Processes -- 2.4.1.1. Study of Slag Foaming -- 2.4.1.2. Foam Stability -- 2.4.1.3. Foam Drainage -- 2.4.1.4. Physical Model of Slag Foaming -- 2.4.2. Foaming Index -- 2.4.2.1. Theory -- 2.4.2.2. Experimental Measurements -- 2.4.2.3. Dimensional Analysis and Empirical Equations -- 2.4.2.4. Mass-Limited Foaming -- 2.4.3. Slag Foaming in Industrial Processes -- 2.4.3.1. Electric Arc Furnace -- 2.4.3.2. Bath Smelting Furnace -- 2.4.3.3. Basic Oxygen Furnace -- 2.4.3.4. Suppression of Foaming -- References -- Chapter 2.5: Applications -- 2.5.1. Rate Phenomena in Direct Ironmaking -- 2.5.2. Ladle Desulfurization Kinetics -- 2.5.2.1. Principles and Equilibrium Relationships -- 2.5.2.2. Kinetic Effects -- 2.5.2.3. Desulfurization Mass Transfer Constant -- 2.5.3. Rate Phenomena in Vacuum Degassing -- 2.5.4. Rate Phenomena in AOD Stainless Steel Production -- 2.5.5. Inclusion Flotation in Argon-Stirred Steel -- References -- Chapter 3: Some Applications of Fundamental Principles to Metallurgical Operations -- 3.0. Introductory Comments: Some Perspectives on the Process of Innovation -- References -- Chapter 3.1: Some Metallurgical Considerations Pertaining to the Development of Steel Quality -- 3.1.1. Introduction -- 3.1.2. Generation of Steel Quality -- 3.1.2.1. Oxygen Control in Molten Steel
  • 1.4.5.1. Basic Thermodynamic for Constrained Gibbs Energy Minimization Approach -- 1.4.5.2. Use of Gibbs Energy Minimizer for Surface Equilibria Calculations -- 1.4.5.3. Some Results -- References -- Chapter 1.5: Interfacial Free Energy and Wettability -- 1.5.1. Wettability -- 1.5.2. Interfacial Free Energy Between Solid and Liquid Phases in Metals and Alloys -- 1.5.3. Interfacial Tension Between Liquid Steel and Molten Slag -- References -- Chapter 1.6: Some Aspects of Electrochemistry of Interfaces -- 1.6.1. Basics of Electrochemistry of Interfaces -- 1.6.1.1. Electrochemical Equilibria -- 1.6.1.2. Electrochemical Double Layer -- 1.6.2. Electrocapillary Phenomena -- 1.6.2.1. Electrocapillary Equation -- 1.6.2.2. Adsorption and Electrocapillary Curves -- 1.6.2.3. Electrocapillarity at the Slag/Metal Interface -- 1.6.2.4. Some Practical Aspects of Electrocapillary Phenomena -- 1.6.2.5. Wettability and Wear of Refractory Materials -- 1.6.2.6. Clogging in Casting Processes -- 1.6.2.7. Emulsification of Metal and Slag -- 1.6.2.8. Separation Technology -- References -- Chapter 1.7: Interfacial Convection and Its Effect on Material Processing -- 1.7.1. Some Basics of the Interfacial Convection -- 1.7.2. Effect of Interfacial Flow in Liquid-Liquid Reactions -- 1.7.3. Effect of Interfacial Flow in Liquid-Gas Reactions -- 1.7.4. Effect of Interfacial Flow in Liquid-Solid Reactions -- 1.7.5. Effect of Interfacial Flow in Solidification Processes and Crystal Growth -- References -- Chapter 1.8: Stability of Interface Between Liquid Steel and Molten Slag -- References -- Chapter 1.9: Applications of Interfacial Phenomena in Process Metallurgy -- 1.9.1. Marangoni Flow During the Welding Process -- 1.9.2. Engulfing of Small Droplets of Molten Slag into Liquid Steel -- 1.9.3. Erosion or Dissolution of Refractories
  • Front Cover -- Treatise on Process Metallurgy: Process Phenomena -- Copyright -- Dedication -- Contents -- Preface -- Editor in Chief -- Co-Editors-in-Chief -- Contributors to Volume 2 -- Acknowledgement -- The Review Committee -- Chapter 1: Interfacial Phenomena in High Temperature Metallurgy -- Chapter 1.1: Surfaces and Interfaces -- 1.1.1. Definition of Surfaces and Interfaces -- 1.1.2. Gibbs Adsorption Isotherm -- 1.1.3. Langmuir's Isotherm -- References -- Chapter 1.2: Surface Tension and Contact Angle -- 1.2.1. Surface Tension -- 1.2.1.1. Definition of Surface Tension -- 1.2.1.2. Temperature Dependence of Surface Tension -- 1.2.2. Contact Angle -- 1.2.2.1. Young's Equation -- 1.2.2.2. Smith's Equation -- 1.2.2.3. Effect of Surface Roughness -- 1.2.3. Wetting -- References -- Chapter 1.3: Experiments -- 1.3.1. Sessile Drop -- 1.3.2. Maximum Bubble Pressure -- 1.3.3. Pendent Drop -- 1.3.4. Drop Weight -- 1.3.5. Detachment Method -- 1.3.6. Liquid Surface Contour Method -- 1.3.7. Capillary Rise Method -- 1.3.8. Levitating Drop -- Appendix A. Software for Evaluation of Surface Tension from Sessile Drop -- References -- Chapter 1.4: Surface Tension Models -- 1.4.1. Modeling of Surface Tension of Liquid Pure Metals and Molten Salts -- 1.4.2. Modeling of Surface Tension of Liquid Alloys -- 1.4.3. Modeling of Surface Tension of Molten Ionic Materials Including Molten Slag -- 1.4.3.1. Some Issues on the Evaluation of Molten Ionic Mixtures -- 1.4.3.2. Evaluation of Surface Tension of Molten Ionic Mixtures -- 1.4.3.3. Evaluation of Surface Tension of Molten SiO2 based Binary and Ternary Slag -- 1.4.4. Evaluation of Interfacial Tension Between Liquid Steel and Molten Slag -- 1.4.5. Application of Constrained Gibbs Energy Minimization Approach to Evaluate Surface Tension of Liquid Alloys
  • 3.1.2.2. The Characterization of Refining Slags -- 3.1.2.3. Slag Chemistry and the Control of Sulfur -- 3.1.2.4. Water Vapor Dissolution in Molten Slags -- 3.1.3. Preservation of Steel Quality -- 3.1.3.1. Furnace to Ladle Transfer -- 3.1.3.2. Ladle to Tundish Transfer -- 3.1.3.3. Tundish to Mold Transfer -- 3.1.4. Evaluation of Steel Quality -- 3.1.4.1. Ferrous Oxide in Molten Slag -- 3.1.4.1.1. Activity Determinator for Ferrous Oxide -- 3.1.4.1.2. Application of Activity Determinator for Desulfurization Control -- 3.1.4.1.3. Application of Activity Determinator for Cleanliness Control -- 3.1.4.1.4. Application of Activity Determinator for Manganese Control -- 3.1.4.2. Continuous Monitoring of Metallurgical Processes -- 3.1.4.2.1. Online Sensors for Evaluation of Liquid Metal Cleanliness -- 3.1.4.2.2. Continuous Nonintrusive Monitoring of Steelmaking Operations -- 3.1.5. Summary -- Acknowledgments -- References -- Chapter 3.2: Refractory Corrosion During Steelmaking Operations -- 3.2.1. Introduction -- 3.2.2. Theoretical Considerations -- 3.2.2.1. Penetration of Melt into Refractories -- 3.2.2.2. Dissolution of Refractories into Melt -- 3.2.3. Corrosion Testing of Refractories [1] -- 3.2.3.1. Static Corrosion Tests -- 3.2.3.2. Dynamic Tests -- 3.2.4. Corrosion of Oxide-Carbon Refractories -- 3.2.4.1. Corrosion Mechanism of MgO-C -- 3.2.4.2. Local Corrosion of Refractories -- 3.2.5. Summary -- References -- Chapter 3.3: Application of Slag Engineering Fundamentals to Continuous Steelmaking -- 3.3.1. Introduction -- 3.3.2. Continuous Steelmaking: An Overview -- 3.3.2.1. Review of Previously Proposed Technologies -- 3.3.2.2. Fundamental Challenges for Continuous Refining of Steel -- 3.3.3. Continuous Steelmaking Based on the Use of DRI -- 3.3.3.1. Direct Reduced Iron -- 3.3.3.2. Use of DRI in Steelmaking -- 3.3.3.3. DRI-Based Continuous Steelmaking
  • 3.3.3.3.1. Process Characteristics